Departement Physik, Universität Basel

Prof. C. Bruder (Zimmer 4.2, Tel.: 267-3692, Christoph.Bruder@unibas.ch)

Dr. Vladimir M. Stojanović (Zimmer 4.16, vladimir.stojanovic@unibas.ch)

Theoretical Solid-State Physics, Herbstsemester 2011

I. Introduction

- I.1 Second quantization
- I.2 Lattice models
- I.3 Electrons in periodic potentials

II. The electron gas

- II.1 Jellium approximation: an introduction
- II.2 Non-interacting electrons in the jellium model
- II.3 Electron-electron interactions in Rayleigh-Schrödinger perturbation theory
- II.4 Spin-polarized electron gas and its region of stability
- II.5 Failure of second-order perturbation theory

III. Green's functions

- III.1 Green's function for the one-particle Schrödinger equation
- III.2 Single-particle Green's functions for many-body systems
- III.3 Equation of motion theory
- III.4 Higher-order Green's functions; example of the Lindhard polarization function for a non-interacting electron gas

IV. Phonons, electron-phonon interaction

- IV.1 Born-Oppenheimer approximation; the self-consistent electron-nuclear problem
- IV.2 Lattice dynamics in the discrete (atomistic) model; quantization into phonons; acoustic and optical phonon modes
- IV.3 Continuum approach to lattice dynamics (1d example); long-wavelength modes
- IV.4 Non-adiabatic corrections: electron-phonon coupling
- IV.5 Polaron: the concept and generic features

V. Response functions

- V.1 The general Kubo formula
- V.2 Kubo formula for the dielectric function
- V.3 The random phase approximation (RPA): example of the polarization function of an interacting Fermi gas
- V.4 Zero-sound collective mode
- V.5 Plasmon mode in Fermi systems with Coulomb interaction
- V.6 Static screening in an interacting electron gas; Friedel oscillations

VI. Broken symmetry and collective properties

- VI.1 Broken symmetry
- VI.2 Goldstone modes

VII. Interacting electron systems in different dimensions

- VII.1 Three dimensions: Fermi liquid theory
- VII.2 Microscopic basis of Fermi liquid theory
- VII.3 Interacting electrons in one dimension
- VII.4 The spinless Luttinger-Tomonaga model

VIII. Strongly correlated systems

- VIII.1 Examples of strongly-correlated electron systems; the Hubbard model
- VIII.2 The Hubbard model at half-filling and the Mott-Hubbard insulators
- VIII.3 Ferromagnetic and antiferromagnetic orders: similarities and differences, low-energy excitations
- VIII.4 Quantization of spin waves: the Holstein-Primakoff transformation; quantum fluctuations in the Néel state
- VIII.5 Spin ordering at weak coupling: spin density waves