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We analyze dephasing in a model system where electrons tunnel sequentially through a symmetric
interference setup consisting of two single-level quantum dots. Depending on the phase difference
between the two tunneling paths, this may result in perfect destructive interference. However, if the
dots are coupled to a bath, it may act as a which-way detector, leading to partial suppression of the
phase-coherence and the reappearance of a finite tunneling current. In our approach, the tunneling
is treated in leading order whereas coupling to the bath is kept to all orders (using P (E) theory). We
discuss the influence of different bath spectra on the visibility of the interference pattern, including
the distinction between “mere renormalization effects” and “true dephasing”.
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I. INTRODUCTION

The destruction of quantum-mechanical phase coher-
ence due to coupling of a system to an irreversible bath
is a subject important not only because of its connection
to fundamental issues (the quantum measurement pro-
cess and the quantum-classical transition) but also be-
cause of its role in the suppression of phenomena result-
ing from quantum interference effects, such as those stud-
ied in mesoscopic physics (including Aharonov-Bohm in-
terference, weak localization and universal conductance
fluctuations). Recently, the field of mesoscopic physics
in particular has seen a revival of interest in these ques-
tions, due to surprising experimental findings1 concern-
ing a possible saturation of the weak-localization dephas-
ing rate at low temperatures, that have not yet been ex-
plained convincingly. Apart from investigations dealing
directly with the problem of weak localization in a disor-
dered system of interacting electrons, several toy models
have been analyzed2–9 to answer the question whether
decoherence at zero temperature is possible at all, con-
trary to the expectations based on perturbation theory.
One of the difficulties faced by models involving discrete
levels consists in the fact that destruction of phase co-
herence for a superposition of excited states of finite ex-
citation energy is perfectly possible even at zero tem-
perature, due to spontaneous emission of energy into the
bath. It is only in the zero-frequency limit of the linear re-
sponse in a system with a continuous spectrum (relevant
for weak-localization and other equilibrium transport ex-
periments) that perturbation theory suggests in general a
vanishing dephasing rate, because then the perturbation
does not supply energy to the system, such that at T = 0
the system is not able to leave a trace in the bath, which
is considered to be the prerequisite for decoherence.

Some questions of interest concerning dephasing, es-
pecially in connection with mesoscopic systems and low
temperatures, are the following ones: How reliable is the
simple classical picture of a phase being randomized by
fluctuating external noise10? In particular, what is the
meaning of the zero-point fluctuations of the bath in this
picture, as opposed to the thermal fluctuations dominat-
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Figure 1: The double-dot “double-slit” setup, with a fixed
phase difference ϕ between the two paths and under the in-
fluence of a fluctuating environment.

ing at frequencies lower than the temperature? When
do the former lead to “mere renormalization effects” and
how is it possible to distinguish these from “true” de-
phasing? Under which circumstances is the suppression
of off-diagonal terms in the reduced system density ma-
trix itself already a good indicator of dephasing? How
reliable are simple arguments based on Golden Rule and
energy conservation, related to the connection between
dephasing and the trace left in the bath by the parti-
cle (“which-way” detection)? When does perturbation
theory fail qualitatively, what is the influence of non-
Markoffian behaviour? How does the dephasing rate de-
pend on the energy supplied by an external perturbation
(frequencies excited in linear response, bias voltage ap-
plied in a transport measurement)? What is the influence
of the Pauli principle in a system of degenerate fermions?
How strong are the qualitative differences in behaviour
resulting from different bath spectra?

In this work, we will present a model that is able to
give insights into most of these questions.

Our model represents a kind of mesoscopic double-slit
setup. It consists of two single-level quantum dots which
are tunnel-coupled to two leads, with a possible phase
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difference between the two interfering paths (see Fig. 1).
Due to destructive interference (at ϕ = π), the tunneling
current may be suppressed completely, provided the two
dot-levels are degenerate and the setup is symmetric in
the two interfering paths. Coupling the dots to a bath
may partly destroy the phase coherence and re-enable
the electrons to go through the setup. For a symmetric
setup, with equal coupling strength between the bath
and each of the two dots, mere renormalization effects
will not be able to lift the destructive interference in this
way. Thus, a finite tunneling current may be taken as a
genuine sign of dephasing. This criterion for dephasing
has been employed before in a model of dephasing due
to spin-flip transitions in first-order tunneling transport
through one or two dots11, as well as for cotunneling
through an Aharonov-Bohm ring coupled to a fluctuating
magnetic flux5.

The influence of phonons on sequential tunneling
through two quantum dots in series has been studied
experimentally in Ref. 12. There, inelastic transitions
induced by piezoelectric coupling to acoustic phonons in
GaAs have been essential for obtaining a finite current
through the two off-resonant dot levels. This kind of
setup has been analyzed theoretically in Refs.13–19. On
the other hand, we will be analyzing tunneling through
two dots placed in parallel. Early theoretical investiga-
tions of this problem (without a fluctuating environment)
include Refs.20,21. Recently, a parallel-dot tunneling
setup has been realized experimentally in Ref.22, with an
emphasis on spectroscopy of the “molecular states” of the
double-dot system (with inter-dot tunneling present). In
our model of an interference setup, we choose to describe
a situation without tunneling between the dots (but with
Coulomb-repulsion). In addition, we want to concen-
trate on interference effects in the orbital motion and
therefore consider the case of spin-polarized transport.
This model - in the absence of a fluctuating environ-
ment - has been investigated previously in Ref.23. Other
recent theoretical works concerning tunneling through
dots in a parallel geometry have mostly investigated spin
and Kondo physics24–27, but also dephasing by spin-flip
transitions11. Some works have treated the influence of
phonons in tunneling interference structures28,29, but no
systematic discussion of dephasing and the visibility of
the interference pattern has been given. Some while ago,
dephasing by nonequilibrium current noise has been in-
vestigated experimentally30 and theoretically31 in a setup
with a single quantum-dot placed into one arm of an
Aharonov-Bohm interferometer.

Our analysis of dephasing in sequential tunneling
through a double-dot will take into account the system-
bath coupling exactly, while we treat the tunnel-coupling
only in leading order. The presence of the Fermi sea in
the leads introduces some aspects related to the Pauli
principle and to the behaviour of systems with a contin-
uous spectrum that cannot be analyzed in simpler models
of dephasing in discrete systems coupled to a bath.

The work is organized as follows: After setting up the

model (Sec. II), we will present a qualitative discussion
of its main features (III). In particular, we will discuss
the relation between entanglement, dephasing and renor-
malization effects. Subsequently, we derive a general for-
mula for the tunneling decay rate of an electron that has
been placed on the two dots in a symmetric superposi-
tion of states (Sec. IV). This is done by building on
the concepts of the P (E) theory of tunneling in a dissi-
pative environment32,33. Following this, we will evaluate
the dependence of the tunneling rate on the bias volt-
age and the bath spectra (Sec. V). We will interpret the
results in terms of “renormalization effects” and “true de-
phasing” (Sec. VI). Building on these sections, we will
finally derive a master equation for the case of weak tun-
nel coupling (Sec. VII), which allows us to calculate the
sequential tunneling current as a function of bias voltage,
temperature, and phase difference (Sec. VIII).

The most important results derived in this work are
the following: Equation (13) is the general expression for
the phase-dependent tunneling decay rate in presence of
the fluctuating environment. It forms the basic input
for the master equation (Eqs. (48)-(50)), that describes
sequential tunneling through the double-dot, where the
resulting current can be obtained from Eq. (52). The vis-
ibility of the interference pattern, which is defined by the
phase-dependence of the current, is given in Eq. (65). It
is connected with the visibility obtained from the phase-
dependence of the tunneling rate itself (Eqs. (16), (17)).

II. THE MODEL

We consider a Hamiltonian describing two degenerate
single-level quantum dots, with respective single-particle
states |+〉 and |−〉 (spin is excluded for simplicity, since
we are interested in dephasing of the electronic motion).
Each of them is tunnel-coupled to two electrodes (with
the same strength for both dots), but involving a possible
phase difference between the tunnel amplitudes (see Fig.
1). In addition, the potential difference between the two

dots is given by a fluctuating field F̂ , whose dynamics is
derived from a linear bath. It represents the fluctuations
due to phonons or Nyquist noise. The system-bath cou-
pling strength is taken to be the same for both dots, while
the sign is opposite, such that the bath can distinguish
between an electron being on dot |+〉 or |−〉:

Ĥ = ε(n̂+ + n̂−) + F̂ (n̂+ − n̂−) + Un̂+n̂− +

ĤL + ĤR + ĤB + V̂ (1)

Here n̂± are the particle numbers on the two dots

(equal to 0 or 1). The bath Hamiltonian ĤB describes a
set of uncoupled harmonic oscillators. It governs the dy-
namics of the fluctuating potential F̂ , which is assumed
to be linear in the oscillator coordinates. The coupling
between electron and bath is of the form of the “inde-
pendent boson model”34. For the case of exactly one
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electron on the double-dot, and in the absence of tunnel-
ing, it corresponds to a spin-boson model with “diagonal
coupling”. In this model, no transition between different
levels is brought about by the bath, such that pure de-
phasing results. U denotes the Coulomb repulsion energy,
which we will take to be so large that double-occupancy
is forbidden. Note that the degeneracy of the two dot-
levels is important in the following: It is necessary to
ensure complete destructive interference at ϕ = π (com-
pare also the discussion in Sec. VII).

The terms ĤL and ĤR contain the energies of the elec-
trons in the left and right reservoirs:

ĤL(R) =
∑

k

εkâ†

L(R)kâL(R)k . (2)

The tunneling between the dots and the leads is described
by V̂ = V̂L + V̂R, with

V̂R =
∑

k

tRk â†
Rk(d̂+ + eiϕd̂−) + h.c. (3)

for the right junction, and

V̂L =
∑

k

tLk â†
Lk(d̂+ + d̂−) + h.c. (4)

for the left junction.

Here d̂± are the annihilation operators for the two dots

(n̂± = d̂†±d̂±) and the phase-factor of eiϕ controls the in-
terference between tunneling events along either the up-
per or lower path. The tunneling phase difference might
be thought of as arising due to the Aharonov-Bohm phase
from a magnetic flux penetrating the region between the
quantum dots.

Note that the tunneling matrix elements t
R(L)
k are as-

sumed not to depend on the dot state |+〉 or |−〉 in our
model. This means that the dots are close enough such
that they couple to the same point on the lead electrodes,
to within less than a Fermi wavelength. Obviously there
could be no appreciable interference effect if the dots were
separated by some larger distance (in which case the k-
dependence of matrix elements would be different for the
two states). The same idealized assumption underlies
several similar models (see, e.g., Refs.11,23,27). The effect
of an arbitrary dot separation has been discussed in some
detail in Ref.21.

The present model, without the bath, has been ana-
lyzed previously in Ref.23 (see also Sec. IV.C of Ref.11).
There, an orbital type of Kondo effect was found in equi-
librium, for ϕ = π, when the level energy was below the
chemical potential. This arises because at ϕ = π there
are two states of the double-dot that couple only to the
left and the right lead, respectively (denoted by |e〉 and
|o〉 in the following). These degenerate states form the
pseudospin responsible for the Kondo effect. However,
that mechanism will be irrelevant for our analysis, as
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Figure 2: The ground state |χ+〉 (|χ−〉) which the bath as-
sumes in the presence of an electron on dot |+〉 (|−〉), shown
schematically for a single bath oscillator (see main text). Af-
ter the electron has tunneled into the lead, |χ−〉 becomes a
superposition of excited states (dashed), while the state |χ0〉
represents the ground state of the bath in the new potential.

we consider the transport situation where the (renormal-
ized) level energy lies between the chemical potentials of
the left and the right lead. Therefore, the degeneracy is
effectively lifted by the bias voltage (which will be as-
sumed to be much larger than the tunneling rate), and
only the state coupling to the left lead would be occupied
at ϕ = π.

III. QUALITATIVE DISCUSSION

In this and the following three sections, we first ana-
lyze the escape of a single electron into the right lead,
where the electron is assumed to start out in a symmet-
ric superposition of the two dot levels, which has been
formed by an electron tunneling onto the dots from the
left lead. In the situation without any bath, this is the
state |e〉 ≡ (|+〉 + |−〉)/

√
2.

Without dephasing, the tunneling decay out of state
|e〉 is made impossible in the case of perfect destructive
interference at ϕ = π, while maximal constructive inter-
ference is present for ϕ = 0. It should be noted that the
attribution of the phase factor to one of the tunnel cou-
plings represents a certain choice of gauge, which affects
the wave functions in the following discussion but none
of the physically observable quantities that are derived
as a result of the master equation in Section VII.

For simplicity, we will assume a zero-temperature sit-
uation throughout the following qualitative discussion,
with a bias eV > 0 applied between the two dots and the
lead in such a way that the electron is allowed to tun-
nel into the lead (see Fig. 2). In addition, since we will
describe the tunneling decay to the right, we will only
consider the coupling V̂R to the right lead in this section
and drop the index R for now.

Without the bath and for perfect constructive interfer-
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ence (ϕ = 0), the tunneling decay rate Γ will take on its
maximum value of 2Γ0, with

Γ0 ≡ 2πD
〈

|tk|2
〉

, (5)

where D is the lead density of states at the Fermi en-

ergy,
〈

|tk|2
〉

is the angular average of |tk|2 at this energy.

The bias voltage V does not enter in this case, as long as
it is positive (permitting decay). For ϕ = π, Γ vanishes
due to perfect destructive interference. In general, we
have:

Γ = Γ0(1 + cosϕ) . (6)

If the bath is included in the description, the following
happens:

First of all, the energy of a single extra electron on any
of the two dots will be renormalized from its initial value
of ε, since the bath relaxes to a ground state of lower en-
ergy in presence of the electron. We will assume that the
value of ε has been chosen exactly to compensate for this

energy change, which is given by −
∫ ∞

0
dω

〈

F̂ F̂
〉

ω
/ω

(see App. A). Then, the energy of an electron on the
dot (and the bath in its new ground state) is the same
as that of the electron being in the lead, at the Fermi
energy of εF ≡ 0 (for V = 0).

Tunneling of an electron from the dots to the lead will
not change the bath state, but it will displace the origin
of the harmonic oscillators comprising the bath, since
the coupling to F̂ is switched off (n̂+ − n̂− changes to
zero). Therefore, the original ground state of the bath
(in presence of the electron) will become a superposition
of excited states in the new bath potential (in absence
of the electron; see Fig. 2). On the other hand, since
energy conservation has to be fulfilled with respect to
the total energy of the electrons and the bath before
and after the tunneling event, only those excited bath
states can be reached whose energies are not greater than
eV , the energy supplied to the electron by the bias volt-
age. This leads to the Coulomb-blockade type suppres-

sion of the tunneling rate at low bias voltages, for ϕ = 0.
Physically, this effect is just the same as that described
by Franck-Condon overlap integrals evaluated between
vibronic states for electronic transitions in molecules.
Qualitatively, this effect is independent of the interfer-
ence setup, since it already occurs for tunneling through
a single dot coupled to a bath.

In contrast, for the case of destructive interference
(ϕ = π), the bath may actually enhance the tunneling
rate from its initial value of 0, since it partly destroys
the phase coherence that is a presupposition for perfect
interference. An electron coming from the left lead will
form the following entangled state with the bath, instead
of the symmetric superposition |e〉 = (|+〉 + |−〉)/

√
2:

(|+〉 |χ+〉 + |−〉 |χ−〉)/
√

2 . (7)

Here the states |χ±〉 denote the respective ground
states of the bath for a bath Hamiltonian given by
ĤB ± F̂ , which are related to each other by a parity
transformation (This also means we assume by defini-
tion there to be no phase factor between these states;
e.g. both may be assumed to have real-valued positive
wave functions). Actually, the entangled state considered
here will be formed only if the electron is given barely
enough energy to enter the double-dot at all (i.e. chem-
ical potential of the left lead infinitesimally larger than
the renormalized level position). Otherwise, excited bath
states may be created even at this step. These complica-
tions will be taken care of in the complete discussion of
the sequential tunneling current (Section VII). There, it
will turn out that the tunneling decay rate derived in the
following, based on our physically motivated ansatz (7),
is exactly the rate that enters the full master equation.
Thus, we proceed with the ansatz (7) for the initial en-
tangled state, in order to calculate the rate for such an
electron to tunnel into the right lead.

The bath measures (to some extent) which dot the
electron resides on, such that the reduced system den-
sity matrix (for the electron on the two dots) becomes
mixed and its off-diagonal elements get suppressed by
the overlap factor 〈χ+|χ−〉. Put differently, the phase
factor between the two dot states in the wave function
of the electron (initially equal to +1) becomes uncertain.
Therefore, there is a finite probability of

Po = (1 − 〈χ+|χ−〉)/2 (8)

to find the electron in the antisymmetric (odd) state

|o〉 ≡ (|+〉 − |−〉)/
√

2. At ϕ = π, where tunneling de-
cay of the symmetric superposition |e〉 is blocked due to
destructive interference, the state |o〉 is allowed to decay
into the lead, at the maximal rate of 2Γ0. In this way,
the interference-induced blockade of electron tunneling is
lifted by dephasing.

However, this simple picture is true only for large
bias voltages, when energy conservation permits any fi-
nal state of the bath after the tunneling event. If the
maximum energy supplied to the electron is limited, the
suppression discussed above (for the case of ϕ = 0) will
apply again. In particular, if the bias voltage is turned
to zero, energy conservation only allows the state |χ0〉 to
be reached, which is the ground state of the bath in the
absence of any electrons on the dots. Then, the tunnel-
ing rate is exactly zero again, despite the fact that the
reduced density matrix of the electron may be mixed to
a strong extent. The reason is the following: When the
overlap of the entangled state (7) with the state |χ0〉 is
taken, the two overlap factors 〈χ0|χ+〉 and 〈χ0|χ−〉 turn
out to be the same, if the coupling of the bath to the
two dots is symmetric (i.e. of equal strength, only of
opposite sign), which we have assumed in writing down
the Hamiltonian, Eq. (1). Therefore, the electronic state
resulting from the projection of (7) onto |χ0〉 is equal
to the symmetric combination, whose decay is forbidden.
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Thus, the combination of energy conservation and Pauli
blocking prevents a finite tunneling rate at zero bias volt-
age, in spite of the mixed state of the electron coupled
to the bath. In this limit the entanglement between elec-
tron and bath only leads to renormalization effects (such
as the change in tunneling rate), but not to genuine de-
phasing. If the coupling were asymmetric, then destruc-
tive interference could be lost even without dephasing
(merely due to renormalization), just as it would be the
case for initially asymmetric bare tunnel couplings. That
is why the asymmetric case is uninteresting for our pur-
poses of distinguishing renormalization effects from real
dephasing.

However, whether we are indeed able to claim that de-
phasing actually vanishes in the limit of low bias voltages
will depend on the behaviour of the tunneling rate as a
function of V and on the comparison of the cases ϕ = 0
and ϕ = π. Here, the bath spectrum, and, above all,
its low-frequency properties, enter. In order to be able
to discuss Γ(V, ϕ) quantitatively, we will make use of the
concepts of the P (E) theory of tunneling in a dissipative
environment.

IV. DECAY RATE AND CONNECTION TO

P (E) THEORY

The tunneling rate Γ will be calculated using the stan-
dard Fermi Golden Rule, i.e. lowest order perturbation
theory in the bare tunneling rate Γ0, but taking into ac-
count exactly the bath coupling. In deriving the formula
for Γ, it turns out to be useful to assume that the bath
oscillators do not get shifted in the tunneling event (un-
like the qualitative considerations from above), but it is
rather the bath states which get displaced (in the op-
posite direction). Obviously, this amounts to the same,
as long as we are interested only in overlap integrals of
different bath states after the event. To that end, we in-

troduce the displacement operator exp(iφ̂), which trans-

forms the bath ground state of ĤB into that of ĤB + F̂ .

Here φ̂ is a suitable hermitian operator that is linear in
the bosonic variables of the bath. In fact, this amounts to
performing the canonical transformation of the indepen-
dent boson model34, see Appendix A. In terms of the two
dot states + and −, we have F̂+ = F̂ and F̂− = −F̂ , as

well as φ̂+ = φ̂ and φ̂− = −φ̂. The transformation elim-
inates the system-bath coupling from the Hamiltonian,

but gives rise to modified dot operators d̂′± = e±iφ̂d̂± in

the transformed tunnel Hamiltonian V̂ ′
R (see Eq. (A7)).

We will assume the tunnel-coupling to be sufficiently
weak, such that we can use lowest-order perturbation
theory to calculate the tunneling decay rate:

Γ = 2π
∑

f

∣

∣

∣

〈

f |V̂ ′
R|i

〉∣

∣

∣

2

δ(Ef − Ei) , (9)

where the initial state |i〉 is given by the configuration

involving the electron residing in the symmetric superpo-
sition on the dots, the unperturbed Fermi sea in the lead
and the bath in its ground state |iB〉. The bath ground
state has become independent of the position of the elec-
tron, due to the above-mentioned transformation. At
finite temperatures, an additional thermal average over
the initial bath state and the initial state of the electrons
in the lead has to be performed. The energies and eigen-
states refer to the Hamiltonian without tunnel coupling.
Applying the new tunneling Hamiltonian V̂ ′

R to the initial
state, we obtain the following expression:

Γ = π
∑

k,fB

|tk|2 (1 − f(εk + eV ))×

∣

∣

∣

〈

fB|e+iφ̂ + eiϕe−iφ̂|iB
〉∣

∣

∣

2

δ(EB
f − EB

i + εk) , (10)

Here f(·) is the Fermi function (for chemical potential
equal to zero), and EB

f,i are the energies of the initial
and final bath states. The energy supplied to the bath
is equal to the energy lost by the electron (given by −εk,
since the renormalized dot energy is zero). Following the
usual derivation of the P (E) theory32,33, we express the
energy-conserving δ function as an integral over time and
also replace the sum over lead states k by an integral over
the energy E = −εk supplied to the bath, finally yielding:

Γ = Γ0

∫ +∞

−∞

dE(1 − f(−E + eV ))

∫ +∞

−∞

dt

2π
eiEt×

1

2

〈

(e−iφ̂(t) + e−iϕeiφ̂(t))(eiφ̂ + eiϕe−iφ̂)
〉

(11)

For the case of arbitrary temperature, the brackets de-
note a thermal average over the initial bath state |iB〉.
We introduce the definitions:

P(−)(E) =
1

2π

∫ +∞

−∞

dt eiEt e±〈φ̂(t)φ̂〉−〈φ̂2〉 . (12)

This permits us to write down our final result for the
tunneling decay rate in terms of P(−)(E):

Γ = Γ0

∫ +∞

−∞

dE (1−f(−E+eV )) (P (E)+cos(ϕ)P−(E))

(13)
The formula given here constitutes the basic expres-

sion for the decay rate as a function of bias voltage and
interference phase ϕ. It represents the appropriate mod-
ification of Eq. (6) in presence of a bath.

Note that for the slightly more general case of arbitrar-
ily correlated fluctuating potentials F̂+ and F̂− attached

to the dots (i.e. an interaction of the form F̂+n̂++F̂−n̂−),
the function P−(E) would contain the cross-correlator of

the associated phases φ̂+ and φ̂−, while P (E) would de-

pend on the autocorrelator of φ̂+ or φ̂− (assumed to be
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the same, for the setup to remain symmetric). In con-
trast to the model treated here, such an interaction would
also involve fluctuations of the sum of energies of the dot-
levels. However, they would only add to the renormaliza-
tion effects mentioned previously and do not contribute
to dephasing by themselves, since such fluctuations can-
not distinguish between the two interfering paths.

By using the definitions

γ(−) ≡ Γ0

∫

dE (1 − f(−E + eV )) P(−)(E) , (14)

we can write

Γ = γ + cos(ϕ)γ− . (15)

The strength of the dependence of Γ on the phase ϕ
may be taken as a signature of phase coherence in our
model. We define the “visibility” of the interference pat-
tern in the usual way, by

υ ≡ (Γmax − Γmin)/(Γmax + Γmin), (16)

which is equal to the ratio

υ =
γ−
γ

. (17)

The visibility υ will be 1 whenever the destructive in-
terference is perfect, and it is zero if there is no depen-
dence of Γ on ϕ.

The effects of the bath on the decay rate are encoded in
the functions P (E) and P−(E), whose general properties
we will discuss now. In the next section, we will evaluate
them for different types of bath spectra.

As usual, the function P (E) describes the probability
(density) that an electron will emit the energy E into the
bath while tunneling into the lead. It is real, nonnegative
and normalized to unity32,33.

At large times |t| → ∞, the correlation function
〈

φ̂(t)φ̂
〉

−
〈

φ̂2
〉

in the exponent of the integral (12) will

tend to −
〈

φ̂2
〉

, for a continuous bath spectrum. This

means that the integrand of P (E) approaches the value

of z ≡ exp(−
〈

φ̂2
〉

), starting from 1 at t = 0. There-

fore, P (E) contains a “quasiparticle δ peak” of strength
z at E = 0, if z does not vanish. It corresponds to the
probability z of having no energy transfer at all from the
electron to the bath (similar to the recoil-free emission of
a γ ray by a nucleus inside a crystal, i.e. the Mössbauer
effect).

The function P−(E) in front of the cos(ϕ) term in Eq.
(13) is different: The integrand of P−(E) will increase
at large times, towards the value of z, starting from z2

at t = 0. The function P−(E) is real-valued (because

of
〈

φ̂(t)φ̂
〉

=
〈

φ̂φ̂(t)
〉∗

), but it can become negative.

Therefore, it cannot be interpreted as a probability den-
sity, in contrast to P (E). Its normalization is given by:

∫

dE P−(E) = z2 . (18)

If z is nonzero, P−(E) also has a δ peak at E = 0, of
weight z, just as P (E). As a consequence, in the case of
destructive interference (ϕ = π), the tunneling rate Γ at
V → 0, T = 0 still vanishes even in the presence of the
bath, since the δ peaks contained in P (E) and P−(E)
cancel exactly in the integral (13). The physical reason
for this coherence has been discussed at the end of the
previous section.

In the case of constructive interference (ϕ = 0), at T =
0 and for V → 0, the integration over E will only capture
the δ peaks contained in P(−)(E), yielding Γ = 2zΓ0.
Thus, the tunneling rate is suppressed by the constant
factor z from its noninteracting value. However, this may
be interpreted as a mere renormalization of the effective
tunnel coupling, since the visibility υ of the interference
pattern is still equal to unity. In order to connect this
result to the qualitative discussion from above, we note
that the overlap of the two different bath ground states
that are adapted to the absence or presence of an electron
on dot ±, is given by:

〈χ0|χ±〉 =
〈

χ0

∣

∣

∣
e±iφ̂

∣

∣

∣
χ0

〉

= exp(−
〈

φ̂2
〉

/2) = z1/2 ,

(19)
Therefore, the magnitude squared of this overlap, that

determines the probability of tunneling without exciting
any bath mode, is equal to z.

On the other hand, for sufficiently large bias voltages
(much larger than the cutoff frequency of the bath spec-
trum), the normalization conditions for P(−)(E) yield

Γ = Γ0(1 + z2 cos(ϕ)) . (20)

The visibility is given by υ = z2. In this limiting case,
where the restrictions due to energy conservation and the
Pauli principle are no longer important, the tunneling
rate Γ at the point ϕ = π of destructive interference
does not vanish. It takes the value Γ0(1 − z2), which is
small if the effects of the bath are weak (z near to 1) and
is equal to one half the ideal maximum value 2Γ0 for a
bath that is sufficiently strong to destroy phase coherence
completely (z = 0), leading to an incoherent mixture of
symmetric and antisymmetric states on the two dots. In
the latter case, the visibility vanishes (even for arbitrary
voltages), since then P−(E) is equal to zero, which makes
Γ independent of ϕ. This will be true for the Ohmic bath,
to be discussed in the next section.

As explained above, the reduced density matrix of the
electron on the dots coupled to the bath predicts a finite
probability of Po = (1 − 〈χ+|χ−〉)/2 to find the electron
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in the antisymmetric state if one starts out from the sym-
metric superposition before coupling it to the bath. The
overlap factor of the bath states involved in this proba-
bility can be expressed as

〈χ+|χ−〉 =
〈

χ0|(e−iφ̂)2|χ0

〉

= z2 . (21)

Comparing with the result Γ(ϕ = π) = Γ0(1−z2) given
above, it may be observed that the decay rate at suffi-
ciently large bias voltages is indeed determined directly
by the probability to find the electron in the state whose
decay is not forbidden by destructive interference (as has
been argued already at the end of the previous section,
near Eq. (8)). It is only in this limiting case, where
an arbitrary amount of energy is available for excitation
of the bath, that the suppression of interference effects
in the transport situation is correctly deduced from the
electron’s reduced density matrix in the presence of the
bath. Formally, this holds because the sum over final
bath states fB in Eq. (10) is not restricted any more and
corresponds to the insertion of a complete set of basis
states. Thus, one obtains, directly from Eq. (10):

Γ =
Γ0

2

〈

χ+ + e−iϕχ−|χ+ + eiϕχ−

〉

, (22)

which reduces to Eq. (20) when the overlaps are eval-
uated, using Eq. (21). Physically, the case of high bias
voltage corresponds to a kind of infinitely fast von Neu-
mann projection measurement that determines the state
of the electron, revealing the fluctuations due to the bath.
In contrast, at low bias voltages (low energy supply), a
kind of “weak” measurement is carried out that takes a
longer amount of time, such that only the low-frequency
fluctuations of the bath are important for dephasing.

V. EVALUATION FOR DIFFERENT BATH

SPECTRA

We will restrict the discussion to T = 0 at first.
The simplest example for the bath is a single harmonic

oscillator of frequency ω. This offers an approximate de-
scription of the interaction with optical phonon modes
(“Einstein model”). In this case, P (E) and P−(E) can be
obtained easily by expanding the exponential in a Taylor

series and using
〈

φ̂(t)φ̂
〉

=
〈

φ̂2
〉

exp(−iωt), before the

integration over time is performed. For P (E), the result-
ing series of δ peaks at harmonics of ω corresponds to
all possible processes where the electron emits any num-
ber n of phonons into the bath while tunneling into the
lead. The expression for P−(E) is the same, apart from
alternating signs in front of the δ functions:

P(−)(E) = z

∞
∑

n=0

〈

±φ̂2
〉n

n!
δ(E − nω) . (23)

Thus, every process involving the transfer of an even
number of quanta to the bath will not ruin the destructive
interference at ϕ = π, since the corresponding contribu-
tions from P (E) and P−(E) cancel in Eq. (13). This
is because the coupling between electron and bath is of
the type (n̂+ − n̂−)F̂ , which gives a different sign of the
interaction amplitude for a phonon emission process, de-
pending on the dot. Therefore, the amplitude of emission
of an even number of phonons will not depend on the dot,
it is insensitive to the state of the electron, and the am-
plitudes of the electron tunneling from |+〉 and |−〉 will
still interfere destructively.

In contrast, emission processes involving an odd num-
ber of quanta introduce a negative sign for an electron
starting in state |−〉, “detecting” the path (or rather, the
initial state) of the electron and interfering constructively

with the processes from |+〉. This lifts the destructive in-
terference and makes Γ 6= 0 at ϕ = π. However, below
the frequency ω of the oscillator, destructive interference
at ϕ = π is still perfect since no quantum can be emitted,
while the magnitude of Γ at ϕ = 0 is renormalized by the
factor z, as has been discussed above in general for the
limiting case V → 0. The same holds true for any bath
with a finite excitation gap, at T = 0. This is shown in
Figs. 4 and 5, to be discussed in the next section.

We now pass on to arbitrary bath spectra. At first,
we will cover the case z 6= 0 (“weak baths”), when we
can apply perturbation theory to discuss the behaviour
of P(−)(E) at low energy transfers E (and, consequently,
that of Γ at low voltages). A Taylor-expansion of the
exponent in Eq. (12) yields:

P(−)(E) =
z

2π

∞
∑

n=0

1

n!

∫ +∞

−∞

dt eiEt
[

±
〈

φ̂(t)φ̂
〉]n

= z

∞
∑

n=0

(±1)n

n!
(
〈

φ̂φ̂
〉

ω
∗ . . . ∗

〈

φ̂φ̂
〉

ω
)(E) (24)

The repeated convolution product contains n times the

correlator
〈

φ̂φ̂
〉

ω
, for n = 0 it is to equal δ(E), and the

negative sign holds for P−(E).
For the following discussion, we prescribe the spectrum

of the fluctuating potential F̂ to be a power-law in fre-
quency ω (at T = 0), with exponent s:

〈

F̂ F̂
〉T=0

ω
= 2αωc

(

ω

ωc

)s

θ(ωc − ω)θ(ω), (25)

The dimensionless parameter α characterizes the bath
strength. In order to be able to rely on perturbation

theory, we have to ensure z > 0. Since
〈

φ̂φ̂
〉

ω
=

〈

F̂ F̂
〉

ω
/ω2, the variance of the fluctuating phase,

〈

φ̂2
〉

,

will be finite only for s > 1 (at T = 0, otherwise s > 2).
In that case, we have z = exp(−2α/(s− 1)). This means
the perturbative analysis presented above is restricted to
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a super-Ohmic bath, s > 1. The case of the Ohmic bath
will be discussed separately further below.

After keeping only terms up to second order in the
expansion of P(−)(E) given in Eq. (24), we get

P (E) + P−(E) = z(2δ(E) + (
〈

φ̂φ̂
〉

ω
∗

〈

φ̂φ̂
〉

ω
)(E) + . . .) ,

(26)
for the symmetric combination, that will determine the

prefactor of 1 + cos(ϕ) in the expression for Γ, Eq. (13),
and

P (E) − P−(E) = 2z
〈

φ̂φ̂
〉

E
+ . . . (27)

for the antisymmetric combination (determining the
prefactor of 1 − cos(ϕ)). Inserting these into (13), using

the power law for
〈

φ̂φ̂
〉

ω
=

〈

F̂ F̂
〉

ω
/ω2 given by (25),

and performing the energy integrals, we find, for suffi-
ciently low voltages (2α(eV/ωc)

s−1 � s − 1):

Γ ≈ Γ0

2
z{(1 + cos(ϕ))(1 +

α2Cs

(s − 1)

(

eV

ωc

)2(s−1)

)+

(1 − cos(ϕ))
2α

s − 1

(

eV

ωc

)s−1

} . (28)

The numerical prefactor Cs is defined as
∫ 1

0 (y(1 −
y))s−2dy.

From Eq. (28), we see that the destructive interference
at ϕ = π is perfect at V = 0, but gets lifted when increas-
ing the bias voltage, with a power V s−1. In contrast, the
decay rate Γ at ϕ = 0 starts out from the constant value
of 2zΓ0 and grows as V 2(s−1). Therefore, the visibility υ
starts out at 1 for V = 0 but decreases as:

υ ≈ 1 − 4α

s − 1

(

eV

ωc

)s−1

. (29)

For s ↓ 1, the range in bias voltage V where these ap-
proximate expressions hold shrinks to zero (at constant
α and ωc). At s = 1, i.e. for the Ohmic bath, the prob-
ability z of not emitting energy into the bath vanishes
completely. As discussed above, this means that there
is no ϕ-dependence at all in Γ, and, consequently, the
visibility is zero at all bias voltages. Furthermore, the
tunneling rate vanishes for eV → 0, even at ϕ = 0.
This is the well-known Coulomb-blockade type of be-
haviour for tunneling in presence of Ohmic dissipation35.
At higher bias voltages, the blockade is removed and Γ
grows towards Γ0. The growth at low voltages is deter-
mined by the power-law behaviour of P (E), which rises
as cω−2α

c E2α−1, where the exponent is determined by the
bath-strength rather than the exponent s = 1 of the bath
spectrum. The dimensionless prefactor c must be found
from the normalization condition for P (E) and depends

only on α (and the type of cutoff in the bath spectrum).
Therefore, in the case of the Ohmic bath we have, at low
V and T = 0:

Γ(V ) = Γ0
c

2α

(

eV

ωc

)2α

. (30)

Finally, we briefly discuss the case of finite tempera-
tures, T > 0.

In that case, the variance of φ̂ is given by

〈

φ̂2
〉

=

∫ ∞

0

dω
〈

φ̂φ̂
〉(T=0)

ω
coth

( ω

2T

)

, (31)

which yields

〈

φ̂2
〉

≈
〈

φ̂2
〉(T=0)

+ 4α

(

T

ωc

)s−1 ∫ ∞

0

ys−2

ey − 1
dy . (32)

The approximation of extending the integral to infinity
holds for temperatures much smaller than the bath cut-
off ωc. This formula gives the temperature-dependence

of the renormalization factor z = exp
(

−
〈

φ̂2
〉)

. The

second integral diverges for s ≤ 2, because z = 0 for
these cases, in contrast to T = 0 where z = 0 only for
s ≤ 1. Again, this results in complete absence of the
interference effect in the tunneling rate Γ(V, ϕ) (because
P−(E) vanishes). It may seem surprising that an in-
finitesimally small temperature can yield such a drastic
qualitative change (for 1 < s ≤ 2), compared to the
zero-temperature case, since the difference should be ob-
servable only at very large times t � 1/T . However, it
must be remembered that our analysis is carried out for
the limit Γ0 → 0, where the average decay time of the
given state is inifinitely large. In other words, the limits
T → 0 and Γ0 → 0 do not commute for such relatively
strong baths. At finite Γ0, the transition from one to the
other case should turn out to be smooth, but this goes
beyond the present analysis.

Apart from the change in z with temperature, there
are two other important differences to the case T = 0:
First of all, even at V → 0 the electron may emit energy
into the bath, due to the thermal smearing of the Fermi
surface in the lead (lifting of Pauli blocking). Secondly,
it may now also absorb some energy during the tunneling
process. Both facts will, in general, lead to a finite tun-
neling decay rate at ϕ = π, V → 0 for any bath, where,
at T = 0, the rate had vanished in any case.

We can approximate the visibility υ at V → 0 and fi-
nite T by using the expansion (24). Inserting the result-
ing expressions for γ(−) (14) into υ = γ−/γ, we obtain

υ(T, V → 0) ≈ 1 − 4

∫

dε
〈

φ̂φ̂
〉

ε
f(ε) . (33)

We evaluate the integral for a power-law bath spectrum
in the limit T � ωc:
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P
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P
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F

〉(
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E

a b c d e

0
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0

Figure 3: The bath spectrum � F̂ F̂ �
E

(bottom) and the re-

sulting functions P (E) (top) and P−(E) (middle), plotted vs.
energy E, for different baths. Energies are measured in units
of the “bath cutoff” ωc. Energy axis is the same in all panels
(starting at E = 0, horizontal tick distance: 1); vertical tick
distance in all panels is 0.5. a: s = 1.5, α = 0.25; b: “acous-
tic phonons”, s = 3, α = 1; c: “optical phonons”, Bath with
gap; d : s = 1, α = 0.25; e: s = 1, α = 0.75 (d,e are “Ohmic”
baths of different strength, z = 0)

∫

dε
〈

φ̂φ̂
〉

ε
f(ε) =

=

∫ ∞

0

dε

〈

φ̂φ̂
〉T=0

ε

sinh(βε)

≈ 2αω1−s
c

∫ ∞

0

dε
εs−2

sinh(βε)
. (34)

This yields:

1−υ(T, V → 0) ≈ 32 α

(

T

ωc

)s−1

(
1

2
−2−s)Γ(s−1)ζ(s−1) ,

(35)
where Γ is the Euler gamma function, and ζ the Rie-

mann zeta function. Therefore, the decrease of the vis-
ibility with increasing temperature T (and V → 0) is
governed by the same power-law as that for increasing
bias voltage V at T = 0, see Eq. (29).

VI. DISCUSSION OF THE RESULTS

The following discussion relates to the results obtained
for T = 0, that are plotted in the figures.

In Fig. 3, several different types of bath spectra
〈

F̂ F̂
〉

E
are shown. Cases (a),(b),(d) and (e) are power-

0 1 2 3 4 5
eV/ωc

0

0.1

0.2

0.3

0.4

0.5

Γ(
V

)/
2Γ

0

a b c

d e

z

(1+z
2
)/2

eV

Figure 4: Decay rate Γ as a function of bias voltage V for the
case of constructive interference (ϕ = 0), at T = 0. Curves
correspond to different bath spectra shown in Fig. 3. Dashed
lines correspond to approximation Eq. (28). The initial
Coulomb-blockade type suppression to a value of Γ/2Γ0 = z
(z = 0 for the Ohmic bath d,e) is lifted with increasing bias
voltage, saturating at Γ/2Γ0 = (1 + z2)/2. Inset depicts en-
ergy diagram with definition of bias voltage for this situation.

laws of the form given in Eq. (25), for a cutoff fre-
quency of ωc = 1. The last two (d,e) are of Ohmic
type (s = 1, z = 0), which corresponds physically to
gate voltage fluctuations due to Nyquist noise. Case
(c) represents a bath with an excitation gap (for exam-
ple optical phonons), with a spectrum given by an in-
verted parabola. In the limit of infinitely small spectral
bandwidth, it would correspond to the single harmonic
oscillator (Einstein mode) discussed above. Case (b),
with a bath spectrum rising as ω3, corresponds to the
experimentally relevant case of piezoelectric coupling to
acoustic phonons, which was determined to be the ma-
jor inelastic mechanism in the experiments of Ref.12 on
double-dots in GaAs (see Ref.16 for a theoretical anal-
ysis deriving this spectrum for wavelengths larger than
the dot distance). The spectra for the first three cases
(a,b,c) have been chosen to give the same renormaliza-
tion factor, z = 1/e. The same figure shows the resulting
functions P (E) and P−(E). These have been obtained
using the integral equation described in Refs.32,36. We
recall that the low-energy behaviour of P (E) is given by
〈

φ̂φ̂
〉

E
=

〈

F̂ F̂
〉

E
/E2 for the cases with z 6= 0, where

perturbation theory may be applied. In case (c), the al-
ternating signs of the different contributions to P−(E)
may be observed, whose physical meaning has been ex-
plained above for the limiting case of the harmonic oscil-
lator.

We now briefly mention some numerical estimates for
the bath strengths as they may occur in experimental
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Figure 5: Decay rate Γ(V ) for the case of destructive interfer-
ence (ϕ = π), at T = 0. Dashed lines refer to Eq. (28). Due
to dephasing, the decay rate becomes finite at finite voltages,
saturating at Γ/2Γ0 = (1 − z2)/2. For the Ohmic bath (d,e)
the dependence is exactly equal to that for ϕ = 0 (Fig. 4).

0 1 2 3 4 5
eV/ωc

0

0.2

0.4

0.6

0.8

1

υ(
V

) 0 π 2π
ϕ

0

0.5

1

Γ/
2Γ

0

a

b
c

υ=1

υ<1

Figure 6: Visibility υ = (Γϕ=0 − Γϕ=π)/(Γϕ=0 + Γϕ=π) as a
function of bias voltage V for different bath spectra (see Fig.
3). For the Ohmic bath (cases d,e) υ ≡ 0. Dashed lines cor-
respond to Eq. (29). Inset illustrates change in interference
pattern Γ(ϕ) upon switching on the interaction with the bath.

situations.

In GaAs, the lack of inversion symmetry leads to
piezoelectric fields proportional to the lattice deforma-
tion, whose effect on electrons at low frequencies is much
stronger than that of the usual deformation potential
(where it is only the potential that is proportional to
the deformation). For the piezoelectric coupling37 to

acoustic phonons in GaAs, one finds (compare Ref. 16)
〈

φ̂φ̂
〉T=0

ω
= W ω/(cs/d)2 for ω � cs/d, where cs ≈

5 · 103 m/s is an estimate for the average velocity of
longitudinal sound waves in GaAs, and d denotes the
distance between the quantum dots. We obtain W =
const ·(eh14/4π)2/( � ρc3

s), where eh14 = 1.4 eV/nm is the
single piezo-electric modulus in the cubic Td structure of
GaAs and ρ = 5.3 · 103 kg/m3 the mass density. The
numerical constant is of order 1 and accounts for the de-
tails of the sound wave dispersion relation as well as the
orientation of the crystal axes with respect to the vector
separating the quantum dots. Inserting these values, W
is found to be on the order of 0.01. In order to obtain

the renormalization factor z, the spectrum
〈

φ̂φ̂
〉

ω
must

be integrated over all frequencies (see above), i.e. up
to the cutoff frequency ωc. The effective cutoff frequency
ωc ∝ cs/d0 is determined by the extent d0 of the dot wave
functions (for d0 = 100nm one obtains ωc ∼ 50 GHz).
Given the present values, and assuming d0 ≈ d, this leads

to estimates for
∫

〈

φ̂φ̂
〉

ω
dω on the order of 0.01, yield-

ing z = exp(−
〈

φ̂2
〉

) near 1. Note that the distance d

between the dots cancels in the estimate for z, as long as
the cutoff frequency is assumed to be given by ωc ∝ cs/d.
However, as ωc might be considerably larger than cs/d
(if d0 � d), one could also obtain a z that deviates more
strongly from unity.

For the Ohmic bath, we may imagine the quantum
dots placed inside a capacitor C connected to a circuit
of resistance R, such that the potential difference 2F̂ be-
tween the dots would be given by the fluctuating volt-
age drop across the capacitor. This leads to a bath

spectrum
〈

F̂ F̂
〉T=0

ω
= π(R/RQ) � 2ω/(1+(RCω)2), with

RQ = h/e2 the quantum of resistance. Therefore, the di-
mensionless coupling constant α introduced above would
be equal to α = (π/2)R/RQ, which can have values both
larger and smaller than 1.

Finally, for optical phonons, we use the Fröhlich in-
teraction Hamiltonian (Ref. 34) with a dimensionless
Fröhlich coupling constant of α = 0.07 (GaAs) to obtain

the rough estimate
〈

F̂ F̂
〉T=0

ω
= δ(ω − ωLO) · (1meV )2 ·

(100nm/d0), with ωLO ≈ 5 · 1013Hz. This yields a z
deviating from unity by about 10−3.

However, in the plots we have chosen z = 1/e for illus-
trative purposes.

The resulting behaviour of Γ(ϕ, V ) at T = 0, calcu-
lated from Eq. (13), is shown in Figs. 4 and 5. In the
case of constructive interference (ϕ = 0, Fig. 4), the
decay rate for the “weak baths” (a,b,c) starts out from
Γ/2Γ0 = z at V = 0 and goes to Γ/2Γ0 = (1 + z2)/2 at
eV/ωc � 1. The initial deviation from the constant value
of z at low voltages is given by the power-law V 2(s−1) con-
tained in Eq. (28). In contrast, the decay rate for the
Ohmic bath (d,e) starts at Γ = 0, rising with a power-
law and saturating at a value of Γ/2Γ0 = 1/2, corre-
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sponding to an equal admixture of odd and even states
in the reduced density matrix of the electron coupled to
the bath. For destructive interference (ϕ = π, Fig. 5),
the behaviour of (a) and (b) at low voltages is given by
V s−1 (see Eq. (28)), while the decay rate of the Ohmic
bath (d,e) remains the same as that for ϕ = 0. In the
special case (c) of the gapped bath, we observe perfect
destructive interference up to the excitation threshold of
the bath at eV = ωc, where Γ(ϕ = π, V ) increases in a
stepwise manner for the first time, with the next increase
at eV = 3ωc. Note that, on the other hand, Γ(ϕ = 0, V )
increases at even multiples of the excitation gap. The
difference comes about because it is only the emission of
an odd number of phonons into the bath that reveals the
location of the electron, as discussed above. This feature
would be absent if the two dots were coupled to two inde-
pendent baths, whereas the other qualitative properties
would remain the same.

From the decay rates at ϕ = 0 and ϕ = π, we may cal-
culate the visibility υ of the “interference pattern” that
is defined by the dependence of Γ on ϕ. The result is
shown in Fig. 6. As we have noted before, the visibility
is always zero for the Ohmic bath. On the other hand,
for the “weak baths”, it is perfect (equal to 1) at V → 0,
due to the perfect destructive interference, regardless of
the suppression factor z appearing in Γ(ϕ = 0). In gen-
eral, the visibility decreases towards higher bias voltages
before saturating at the limiting value of z2. However,
in contrast to intuitive expectation, the decrease may be
nonmonotonous, i.e. the visibility of the interference ef-
fect may actually be enhanced by increasing the supply
of energy available to the electron, although the decay
rate Γ always increases monotonously at any V . This
is particularly striking in case (c), where the visibility
drops down to zero in a certain range before rising again.
The decrease down to the exact value of 0 is related to

the special choice of
〈

φ̂2
〉

= 1 (z = 1/e), which gives

equal strengths of the peak at E = 0 and the first peak
around E = ωc, which then are able to cancel in the
integral γ− over P−(E) that is proportional to the visi-
bility. However, the physical reason for a dip in visibility
is rather generic: In that energy range, the decay rate Γ
for ϕ = π has already increased due to dephasing, while
the blockade-type suppression of the value of Γ for ϕ = 0
has not yet been lifted. This is a consequence of the
even-odd effect discussed above.

VII. SEQUENTIAL TUNNELING THROUGH

THE DOUBLE-DOT

Up to now, we have discussed in detail the influence of
the bath on the tunneling decay rate of an electron which
has been placed onto the two dots in the symmetric su-
perposition. In order to complete the picture, we have to
calculate the sequential tunneling current through such a
double-dot interference setup. This will be done by deriv-
ing and solving a master equation for the reduced density

matrix of the double-dot system, taking into account the
system-bath coupling exactly, while the tunnel-coupling
is treated in leading order. We are interested specifically
in the nonlinear response, i.e. in how an increasing bias
voltage helps to destroy the phase coherence. The tun-
neling rates calculated previously will serve as input to
the master equation.

However, in order to facilitate the understanding of the
results, we first turn to a qualitative description of the
situation without the bath.

At ϕ = π, tunneling is completely blocked, since the
left reservoir only couples to the even state |e〉, while the
right reservoir couples to the antisymmetric (odd) su-
perposition, |o〉. At ϕ = 0, both reservoirs couple to |e〉,
whereas |o〉 is completely decoupled from the leads (com-
pare the discussion in Ref.27). This means that a current
may flow if |o〉 is empty. However, if |o〉 is filled, the cur-
rent vanishes, because double-occupancy is forbidden in
our model. Since there is no way to change the occupa-
tion of |o〉, the stationary density-matrix of the double-
dot at ϕ = 0 will be any convex combination of these two
possibilities (at T = 0, in the absence of other relaxation
paths). At any value of ϕ in between these extremes,

there is always the state |Ψ〉 = (|+〉 − e−iϕ |−〉)/
√

2,
whose decay into the right lead is blocked by destructive
interference. As there is a nonvanishing overlap between
|Ψ〉 and the state |e〉 which is reached by tunneling from
the left lead, one will observe an accumulation of pop-
ulation in |Ψ〉, until the current is blocked again. This
argument holds at T = 0, while at finite temperatures
the electron can decay towards the left lead and make a
new attempt. Therefore, in this simple picture, the sta-
tionary current at T = 0 would be zero at any ϕ except
for ϕ = 0, where it is undefined.

However, one has to take into account that the cou-
pling to the reservoirs does not only lead to decay but
also to an effective tunnel coupling between |+〉 and |−〉.
Although this cannot change the blockade of the current
at ϕ = π (leading only to an energy shift of |e〉 vs. |o〉),
it does lift the blockade at other values of ϕ. This is be-
cause the blocked state |Ψ〉 is no longer stationary, such
that an electron will not remain there forever. The de-
generacy at ϕ = 0 still remains. Therefore, in the ideal
case without coupling to a bath, we expect the current
to vanish at ϕ = π and to rise towards a maximal ampli-
tude near ϕ = 0. According to the previous argument,
at T = 0 this maximal amplitude will be determined by
the effective tunnel-coupling between the dot states.

Introducing the bath will then lead to renormalization
effects and spoil the perfect destructive interference at
higher values of the bias voltage (or temperature), quali-
tatively in the same way as it has been explained above.
We will show that the actual visibility υI of the current
interference pattern I(ϕ) is given by a monotonous func-
tion of the visibility υ introduced above for the tunneling
rate (at symmetric bias).

We start with the Hamiltonian that is obtained after
applying the unitary transformation of the independent
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boson model (A5) onto our Hamiltonian (1):

Ĥ ′ = ε′(n̂+ + n̂−)+U ′n̂+n̂−+ĤB +ĤL +ĤR + V̂ ′ (36)

Here ε′ is the (renormalized) energy of the two states,
which we will take to be ε′ = 0 from now on. U ′ is
the interaction constant that involves both the Coulomb
repulsion as well as the effective attractive interaction
induced by the bath. We assume U, U ′ � T, eV , such
that double-occupancy is forbidden.

The term which we will treat as a perturbation is given
by V̂ ′, describing the tunneling to the left and the right
leads in the presence of the bath. It is the transformed
version of V̂ (compare Eqs. (3) and (4) and Appendix A),

where the additional fluctuating phase factors exp(±iφ̂)
have been introduced:

V̂ ′ =
∑

j=l,r

∑

α=+,−

ĵαd̂α + h.c. , (37)

where

l̂± = e±iφ̂ l̂ (38)

l̂ =
∑

k

tLk â†
Lk (39)

r̂+ = e+iφ̂r̂ (40)

r̂− = e−iφ̂eiϕr̂ (41)

r̂ =
∑

k

tRk â†
Rk . (42)

As usual, the current through the device does not only
depend on the rates for electrons to tunnel into and out of
the dots, but also on the stationary state which the sys-
tem assumes in the nonequilibrium situation, i.e. under
an applied bias voltage.

We will now derive a master equation for the reduced
density matrix ρ̂ of the double-dot system, which con-
tains the populations ρ++, ρ−−, ρ00 (“0” denoting “no
electron”) and the coherences ρ+− and ρ−+ (with ρ00 =
1−ρ++−ρ−−, ρα0 = ρ0α = 0 for α 6= 0, and ρ−+ = ρ∗+−).
We cannot simply use the standard kind of master equa-
tion, since we have to deal with two degenerate levels |+〉
and |−〉, and it is important that a tunneling event may
create a coherent superposition of |+〉 and |−〉 (for exam-
ple the even state |e〉). Such a master equation - for de-
generate levels - has also been employed in Ref.11 (with-
out coupling to the bath, and evaluated in the linear-
response regime). The equation is different from that
employed in the “orthodox” theory of sequential tun-
neling, where no coherent superpositions are involved.
Note that for a finite tunnel-coupling the levels could be
treated as degenerate as long as their energetic distance
is much smaller than the level-broadening due to tunnel-
ing. However, as we consider the limit Γ0 → 0, we need
to have exactly equal energies. Otherwise, the energy of

the hole that is created in the left electrode would be-
tray the dot state which the electron has entered, thus
preventing any coherent superposition to form.

Given the initial reduced density matrix ρ̂(0), and as-
suming the state of the environment (bath and reservoirs)
to be independent of the electronic state on the dot at
t = 0, we obtain the time-evolution ρ̂(t) by tracing over
the environmental degrees of freedom (“E”):

ρ̂(t) = trE [T̂ e−i � t

0
ds V̂ ′(s)ρ̂(0) ⊗ ρ̂E

˜̂
Tei � t

0
ds V̂ ′(s)]

= ρ̂(0) −
∫ t

0

dt1

∫ t1

0

dt2 trE [V̂ ′(t1)V̂
′(t2)ρ̂(0) ⊗ ρ̂E + h.c.]

+

∫ t

0

dt1

∫ t

0

dt2 trE [V̂ ′(t1)ρ̂(0) ⊗ ρ̂EV̂ ′(t2)] + . . . .(43)

Physically, by using factorized initial conditions, we
neglect correlations between subsequent tunneling events
which could be due to excitations in the electrodes or in
the bath: Since the tunneling rate is very small, these
excitations will have traveled away from the double-dot
until the next event takes place. The entanglement be-
tween electron and bath (discussed in the previous sec-
tions) would preclude factorized initial conditions, if it
were not treated indirectly in this approach (via the uni-
tary transformation). Note that we do not have to make
any secular approximation at this point, unlike the usual
derivation of a master equation38. It turns out that all
contributions only depend on the time-difference t1 − t2
anyway, because the dot levels are degenerate. There-
fore, in the long-time limit t → ∞, the integration over
(t1 + t2)/2 results in a factor t, and the endpoints of the
integrals over t1 − t2 may be extended to ∞. This yields
the desired master equation that will determine the sta-
tionary ρ̂, as well as the current, in the limit of weak
tunnel coupling. Some details of the derivation are pro-
vided in Appendix B. We also point out that it is possible
to handle even the case of non-degenerate levels correctly
(at least for the case without the bath), by omitting the
secular approximation from the outset39.

In order to abbreviate the resulting expressions, we
introduce the following definitions for the effective in-
and out-tunneling rates as well as the effective tunnel
couplings generated by the electrodes:

γL(−) ≡ ΓL0

∫

dε (1 − fL(ε)) P(−)(−ε) (44)

γin
L(−) ≡ ΓL0

∫

dε fL(ε) P(−)(ε) (45)

∆L ≡ −ΓL0

π

∫ Λ

−∞

dε (1 − fL(ε))

∫

dω
P−(ω)

ε + ω
(46)

γ̃L− ≡ γL−[P 7→ P̃ ] = γL− + i∆L . (47)

Analogous definitions hold for L 7→ R.
Eq. (44) is equivalent to the definition (14) used for

γ(−) in previous sections. Note that the effective tunnel
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coupling ∆L(R) depends on P−, because it arises from
transitions between the states |+〉 and |−〉, via an in-
termediate lead state. In the expression for ∆L(R), the
energy-dependence of the density of states and the tunnel
coupling to the reservoir electrode should be kept in or-
der to have a convergent integral. We will take this into
account by introducing an effective upper energy cutoff
Λ in the integral.

One might wonder why the effective tunnel couplings
∆L(R) do depend on the occupation of electron states in
the reservoirs. After all, in the non-interacting case, it is
possible to calculate such a change of the effective single-
particle Hamiltonian prior to filling in the electron states.
Alternatively, in a calculation that already takes into ac-
count occupation factors, there would be two contribu-
tions which add up to an integral that does not depend
on the Fermi function. However, we consider the inter-
acting case U = ∞, such that (even without the bath)
one of these contributions is missing (since it would in-
volve intermediate states with double occupancy). The
resulting logarithm is analogous to that which appears
in the Kondo problem. This effective tunnel coupling
has also been discussed in Ref.23, for the case without
a bath. There, the upper cutoff Λ was provided by the
Coulomb coupling U , since for higher energies double-
occupancy is no longer forbidden and the non-interacting
case takes over (where two contributions arise that can-
cel each other). If we take the limit U → ∞, then Λ will
be set by a cutoff in the tunnel matrix elements (or the
electron reservoir’s density of states).

The general master equation for the reduced density
matrix of the double-dot, derived in the limit of weak
tunnel coupling but arbitrary electron-bath coupling, fol-
lows by inserting the definitions (44)-(47) into Eqs. (B2)
and (B3):

ρ̇++ = −ρ++(γL + γR)

+ρ00(γ
in
L + γin

R )

−ρ−+

2
(eiϕγ̃R− + γ̃L−) − h.c. , (48)

ρ̇−− = −ρ−−(γL + γR)

+ρ00(γ
in
L + γin

R )

−ρ+−

2
(e−iϕγ̃R− + γ̃L−) − h.c. , (49)

ρ̇+− = −ρ+−(γL + γR)

+ρ00(e
iϕγin

R− + γin
L−)

−ρ++

2
(eiϕγ̃∗

R− + γ̃∗
L−)

−ρ−−

2
(eiϕγ̃R− + γ̃L−) . (50)

The ingredients of the master equation obtained here
may be interpreted as follows:

One part of the right hand side corresponds to the uni-
tary time-evolution generated by the effective tunneling
Hamiltonian

ĤT
eff =

1

2
(eiϕ∆R + ∆L) |+〉 〈−| + h.c. . (51)

Furthermore, the in-tunneling contributions in the
equations for ρ++ and ρ−− depend on P (E), while that
for ρ+− is determined by P−(E), since it describes the
creation of a coherent superposition of |+〉 and |−〉 (which
is hindered by the bath). This term would be absent in
the usual master equation. In particular, if γin

L− → γin
L ,

which will be the case at T = 0 for vanishing bias between
the dots and the left electrode, an electron tunneling from
the left lead will end up in the coherent superposition
where ρ+− = ρ++ = ρ−−. Taking into account that we
are working in a transformed basis, this describes just the
entangled state (7), confirming the starting point of our
earlier discussion. Note that the out-tunneling contribu-
tion for ρ++ also depends on ρ+−, for example. This
reflects the fact that a superposition between the two
states may be blocked from decaying into the lead, while
each state separately can decay.

The stationary density matrix is obtained by demand-
ing dρ̂/dt = 0 (and using the relations ρ00 = 1 − ρ++ −
ρ−− and ρ−+ = ρ∗+−). This will give us the density ma-
trix in zeroth order Γ0

0 in the bare tunnel coupling, which
we need to calculate the current in leading order Γ1

0.
We can obtain the current from the contribution of the

left electrode to the change ρ̇++ + ρ̇−− in the double-dot
occupation (i.e. keeping only terms that stem from the
left electrode in the master equation). This is equal to
the right-going current in the stationary limit:

I

e
= (ρ̇++ + ρ̇−−)L =

2ρ00γ
in
L − γL(ρ++ + ρ−−) − 2γL−Re[ρ+−] . (52)

An alternative way of deriving the current would be to
start from the general Meir-Wingreen formula40 which
expresses the current in terms of the exact Green’s func-
tions of the double dot, to be calculated in presence of
the tunnel-coupling and the bath. This has been the ap-
proach of Ref.11 for the case without the bath, and we
have checked (52) to give the same result in that case.

VIII. EVALUATION OF THE SEQUENTIAL

TUNNELING CURRENT AND THE VISIBILITY

In order to evaluate the current as a function of tem-
perature T , bias voltage V and phase difference ϕ, we
will now specialize to the case of symmetric bias and
left-right symmetric tunnel couplings (ΓR0 = ΓL0 = Γ0).
All essential features (in particular the perfect destruc-
tive interference in absence of the bath) are independent



14

0 π 2π
ϕ

0

0.1

0.2

0.3

0.4

0.5
I/(

eγ
)

Figure 7: The current I for different values of the visibility
υ = γ−/γ = 0.8, 0.9, 0.99, 0.999, 0.9999 (from top to bot-
tom). The limits ϕ → 0 and υ → 1 do not commute. Other
parameters held fixed: λ = e−βµ = 0.2 and δL = δR = −1.

of this assumption. We will find that the current is sym-
metric under ϕ 7→ −ϕ even for the nonlinear response
considered here, due to the symmetry of the model (com-
pare Ref.11 for a systematic analysis of phase-locking in
a variety of interference geometries).

We find from Eqs. (44)-(47), using f(ε) = 1 − f(−ε):

γR(−) = γin
L(−) = γ(−) ≡ Γ0

∫

dε f(ε − µ) P(−)(ε) , (53)

where µ = eV/2 is the chemical potential of the
left reservoir. This is definition (14), with eV replaced
by µ = eV/2 (since we deal with the symmetric bias
case). Furthermore, we use the condition of detailed bal-
ance, P(−)(−E) = exp(−βE) P(−)(E) (see, for example,

Ref.32), which leads to

γL(−) = γin
R(−) = e−βµγ(−) . (54)

The effective tunnel couplings are still different (be-
cause of the different Fermi distributions):

∆L(R) = −Γ0

π

∫ Λ

−∞

dε f(−(ε∓ µ))

∫

dω
P−(ω)

ε + ω
. (55)

The lower sign belongs to the right electrode.
For the special case of T = 0, electrons always enter

from the left and go to the right, such that we have γL =
γL− = γin

R = γin
R− = 0 and γR(−) = γin

L(−) = γ(−), with

γ(−) = Γ0

∫ µ

0

dε P(−)(ε) . (56)

The effective tunnel couplings are, at T = 0:

∆L(R) = −Γ0

π

∫

dω P−(ω) ln

[

Λ + ω

|µ ± ω|

]

. (57)

Note that, without any bath present, ∆L(R) will have
a logarithmic singularity at µ → 0, for T = 0. The upper
cutoff Λ will be given by the minimum of the Coulomb
repulsion energy U and the bandwidth of the reservoir’s
electronic energy band (or by some cutoff in the tunnel
matrix elements). For the purposes of our discussion, we
assume Λ � µ, ω.

In the the limit of high bias voltages (ω � Λ, µ), we
obtain effective tunnel couplings whose magnitude goes
as z2 and decreases logarithmically with increasing µ:

∆L ≈ ∆R ≈ −Γ0

π
ln

[

Λ

µ

]
∫

dω P−(ω) = −z2 Γ0

π
ln

[

Λ

µ

]

.

(58)
By solving the master equation for the stationary den-

sity matrix and inserting the result into Eq. (52), we
obtain the expression for the current through the double
dot in terms of all of the quantities mentioned previ-
ously. In general (at arbitrary T ), it is found that the
current may be written as the product of γ with a di-
mensionless function of the phase difference ϕ and the
ratios υ = γ−/γ, δL(R) = ∆L(R)/γ and βµ:

I = eγ I0[ϕ, βµ, υ, δL, δR] . (59)

The complete expression for I0 is very cumbersome,
although it may be found analytically by straightforward
solution of the master equation (it is listed for T = 0 in
Appendix C). Therefore, let us first discuss the situation
without coupling to a bath. In that case, we obtain

δL = δR ≡ δ = −Γ0

π

∫ Λ

−∞

dε

ε
f(µ − ε) (60)

and γ = γ− = Γ0f(−µ). The current turns out to be
(with λ ≡ e−βµ):

I

eγ
=

4(1 − λ)(δ2 + λ) cos2(ϕ
2 )

3δ2 + 2(1 + λ + λ2) + 3δ2 cos(ϕ)
. (61)

Several points should be noticed about this expression:
Firstly, the destructive interference at ϕ = π remains
perfect regardless of temperature, because there are no
current-carrying states at all. At zero temperature (λ =
0), the maximal amplitude of the current is Imax/eγ =
2δ2/(3δ2 + 1), which vanishes when the effective tunnel
coupling δ goes to zero. This has been explained above
as a consequence of the possible transition into a current-
blocking state, which can only be undone by the effective
tunnel coupling. At finite temperatures (λ > 0), the
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maximal current is nonzero even for δ → 0, where it
approaches the value of Imax/eγ = 2λ(1−λ)/(1+λ+λ2).
This has a maximum at around T ∼ µ. It vanishes for
larger temperatures as µ/T , which is to be expected for
tunneling through a localized level (decreasing derivative
of the Fermi function). In addition, the shape of I(ϕ)
depends on δ and λ, with a sharper minimum at ϕ = π
in the case of larger |δ|. In the limit of δ → 0, the current
becomes a pure cosine. At finite temperatures (as well as
for υ 6= 1) the behaviour is similar, except for the finite
amplitude of the current at δ → 0.

Now we turn to the situation including the bath. The
general expression for the current is very lengthy, and we
will omit it here. However, it turns out that the maximal
and minimal current are functions merely of υ and λ =
e−βµ, while they are independent of δL,R.

The amplitude of the minimal current (at ϕ = π) is
given by

I(ϕ = π)

eγ
=

2(1 + λ)(1 − λ2)(1 − υ2)

3(1 + λ)2 + (1 − λ)2υ2
, (62)

while the maximal current (at ϕ = 0) is

I(ϕ = 0)

eγ
=

2

3
(1 − λ) . (63)

It should be noted that the expression (61) for the current
in the ideal case seems to contradict this simple formula.
However, that is because the limits ϕ → 0 and υ → 1 do
not commute. This is shown in Fig. 7. It means that
for T = 0 and δL,R → 0 the maximal current calculated
according to (63), which is independent of δL,R, and the
“typical” amplitude of the current (∝ δ2

L) may deviate
strongly. The peculiar behaviour near ϕ = 0 seems to
be connected to the physical degeneracy of the case ϕ =
0, υ = 1 which has been discussed above.

From these formulas, we obtain the visibility, defined
in terms of the current:

υI ≡ I(ϕ = 0) − I(ϕ = π)

I(ϕ = 0) + I(ϕ = π)
. (64)

It can be expressed entirely by the visibility υ defined
previously in terms of the tunneling rates (Eqs. (16),
(17)), as well as the temperature-dependent factor λ =
e−βµ (µ = eV/2):

υI =
2(1 + λ + λ2)υ2

3(1 + λ)2 − (1 + 4λ + λ2)υ2
. (65)

This is a monotonous mapping of υ to the interval
[0, 1], with only a weak dependence on λ. The other
parameters δL, δR only modify the amplitude and shape
of the current pattern I(ϕ). Therefore, all the statements
about the visibility made in the previous discussion of
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Figure 8: The visibility υI of the pattern I(ϕ), for piezoelec-
tric coupling to acoustic phonons (b) (solid line) and for the
optical phonon bath (c) (dashed line), plotted vs. µ = eV/2,
at different temperatures T/ωc = 0.01, 0.05, 0.1, 0.2, 0.4, 0.5
(top to bottom). Inset depicts energy diagram for tunneling
in this situation.

the tunneling decay out of the symmetric superposition
continue to hold up to this monotonous transformation
(and with eV replaced by µ = eV/2). In particular, at
T = 0, we have

υI =
2υ2

3 − υ2
. (66)

The dependence of the visibility υI on the bias voltage
eV = 2µ, the temperature T and the bath spectrum is
displayed in Fig. 8, for bath spectra of type (b) and (c).
The decrease of υI at µ = 0 with increasing tempera-
ture T in case (b) is well approximated by Eq. (35) for
υ(T, V → 0) (employing the relation υI = υ2/(2−υ2) for
µ = 0). (The functions P(−)(E) for finite temperatures
have been calculated numerically using the fast Fourier
transform, from the defining equation (12)).

Note that for bath spectra with z = 0 (i.e. exponent
s ≤ 1 at T = 0 and s ≤ 2 at T > 0) the visibility van-
ishes entirely (at any V ), as has been explained in the
previous sections. We have already pointed out that this
picture is expected to change if one treats the tunnel-
coupling to higher order. However, we have to leave this
analysis for the future. One possible approach to a non-
perturbative (but still approximate) treatment of both
the tunnel-coupling and the system-bath coupling at the
same time seems to be the numerical “real-time renor-
malization group” scheme41.
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IX. CONCLUSIONS

We have analyzed dephasing in tunneling through two
parallel single-level quantum dots with a fluctuating en-
ergy difference between the dots. The disappearance of
perfect destructive interference in a symmetric setup has
been taken as a criterion for “genuine” dephasing, as op-
posed to mere renormalization. The coupling to the bath
has been taken into account exactly, via the “independent
boson model” and the concepts of the “P (E) theory” of
tunneling in a dissipative environment, while the tunnel
coupling has been treated in leading order.

We have discussed in detail the behaviour of the den-
sity matrix of a single electron that has been placed in a
superposition of the two dot levels. The bath measures
(to some extent) the position of the electron, such that
the electron’s density matrix becomes mixed. However,
this allows direct conclusions about the “incoherent cur-
rent” only in the limit of high bias voltages, correspond-
ing to a fast “projection” measurement of the electron’s
state. For lower voltages, only the low-frequency part
of the bath spectrum contributes to the lifting of de-
structive interference. Thus, for any “weak bath”, whose
spectrum falls off fast towards low frequencies, the vis-
ibility of the interference effect becomes perfect in the
limit of low bias voltages V and temperatures T , when
the energy supplied to the electron is vanishingly small.
This is the case for a fluctuation spectrum ∝ ωs with
s > 1 (s > 2) for T = 0 (T > 0). The visibility may
show a nonmonotonous behaviour as a function of bias
voltage. For “stronger” spectra (smaller exponent s), in-
cluding the Ohmic bath (s = 1), there is the well-known
zero-bias anomaly (suppression of the tunneling current
at low voltages), which affects equally both the cases of
constructive and destructive interference. Therefore, the
visibility vanishes exactly at any bias voltage in our ap-
proach, where the tunnel coupling has been treated only
in leading order. Although there is always a suppres-
sion of the magnitude of the tunnel current for the case
of constructive interference, this may be interpreted as
a mere renormalization of the effective tunnel-coupling,
since the perfect destructive interference is not affected
and since it occurs even for a bath with an excitation gap.
The full dependence of the sequential tunneling current
I(ϕ) on voltage, temperature, bath spectrum and phase
difference ϕ between the interfering paths has been de-
rived by setting up a master equation for the state of the
double-dot (which is special due to the degeneracy of dot
levels).

The major questions that have remained open in our
analysis are related to the behaviour at stronger tunnel
coupling. In particular, the perfect destructive interfer-
ence may also be overcome by correlated tunneling of sev-
eral particles (with an intermediate “virtual” excitation
of the bath), and this process will therefore contribute
to dephasing, although it is expected to be suppressed
strongly at low voltages and temperatures. Likewise,
the visibility for the Ohmic bath (or other strong baths),

which turns out to be zero in the present approximation,
may be changed at low bias voltages and temperatures
comparable to the tunneling rate. This will require other
methods to analyze the competition between strong tun-
nel coupling and system-bath coupling.
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Appendix A: INDEPENDENT BOSON MODEL

For reference purposes, we describe here the canoni-
cal transformation employed in the independent boson
model. See Ref.34 for more details (concerning the case
of at most a single particle). Consider a set of electronic

levels j that couple to bath operators F̂j which are as-
sumed to be linear in the coordinates (and momenta) of

a bath of harmonic oscillators, ĤB :

Ĥ =
∑

j

(εj + F̂j)n̂j + ĤB . (A1)

Here εj is the unperturbed level energy and n̂j = d̂†j d̂j

is the number of particles on level j. The fluctuating
fields are characterized completely by their power spectra
at T = 0,

〈

F̂lF̂j

〉T=0

ω
≡ 1

2π

∫ +∞

−∞

dt eiωt
〈

F̂l(t)F̂j

〉T=0

. (A2)

Here we will restrict ourselves to the case where the dif-
ferent variables commute, [F̂l, F̂j ] = 0. As a consequence,

the spectrum
〈

F̂lF̂j

〉T=0

ω
is real-valued, but there may

still be correlations.
The most straightforward solution proceeds via a uni-

tary transformation34 (essentially a gauge transforma-

tion). One introduces the fluctuating phases φ̂j , whose

time-derivatives are given by the F̂j :

˙̂
φj ≡ i[ĤB , φ̂j ] = −F̂j . (A3)

The exponent generating the unitary transformation is
defined as:

χ̂ =
∑

j

φ̂j n̂j . (A4)

Applying the transformation to the Hamiltonian in Eq.
(A1) yields:
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Ĥ ′ = e−iχ̂Ĥe+iχ̂ =
∑

j

εj n̂j −
∑

lj

Jlj n̂ln̂j + ĤB . (A5)

The coupling between system and bath has been elim-
inated, resulting in an effective interaction between par-
ticles on the different levels, with:

Jlj =

∫ ∞

0

dω

〈

F̂lF̂j

〉T=0

ω

ω
. (A6)

The Jlj are real-valued and independent of tem-
perature. For l = j they describe energy shifts of
single-particle levels. The canonical transformation also
changes the particle annihilation and creation operators,

d̂′j = e−iχ̂d̂je
+iχ̂ = eiφ̂j d̂j , (A7)

and d̂′†j = d̂†je
−iφ̂j . This will affect all Green’s func-

tions and, therefore, also the time-evolution of the single-
particle density matrix. In addition, it becomes impor-
tant if a tunneling part is added to the Hamiltonian,

where the operators d̂
(†)
j appear, such that they have to

be transformed according to (A7). However, since the

phases φ̂j and the particle operators d̂
(†)
j commute (even

at different times, when evolved according to Ĥ ′), the
evaluation of Green’s functions always splits into a part
referring to the particles and a separate average over the
bath operators. This is the major simplification brought
about by the “diagonal coupling” between system and
bath.

Appendix B: DETAILS OF THE MASTER

EQUATION DERIVATION

The general expression for the time-evolution of the re-
duced density matrix, Eq. (43), may be evaluated by not-

ing that in the expectation values of products V̂ ′V̂ ′ only

those contributions remain which combine d̂αĵα (tunnel-

ing out of the dots) with ĵ†β d̂†β (tunneling onto the dots):

dρ̂

dt
= −

∑

α,β,j

∫ ∞

0

ds
{

d̂α(s)d̂†β ρ̂
〈

ĵα(s)ĵ†β

〉

+ h.c.

+d̂†α(s)d̂β ρ̂
〈

ĵ†α(s)ĵβ

〉

+ h.c.
}

+
∑

α,β,j

∫ +∞

−∞

ds
{

d̂α(s)ρ̂d̂†β

〈

ĵ†β ĵα(s)
〉

+

d̂†α(s)ρ̂d̂β

〈

ĵβ ĵ†α(s)
〉}

. (B1)

(Note that there is no minus sign from fermion opera-
tor re-ordering in this factorization of dot and reservoir

part, as the reservoir fermion operators are dragged past
an even number of dot operators; compare e.g.41; alter-
natively, it is also possible to define them as commuting
operators, since there is no interaction between them).
We get for the individual matrix elements (for brevity,
the summation over j = l, r is implied):

ρ̇++ = −ρ++

∫ +∞

−∞

ds
〈

ĵ†+(s)ĵ+

〉

+ρ00

∫ +∞

−∞

ds
〈

ĵ+ĵ†+(s)
〉

−ρ−+

∫ ∞

0

ds
〈

ĵ†+(s)ĵ−

〉

− h.c. , (B2)

ρ̇+− = −ρ+−

∫ ∞

0

ds
〈

ĵ†+(s)ĵ+

〉

−ρ+−

∫ ∞

0

ds
〈

ĵ†−ĵ−(s)
〉

+ρ00

∫ +∞

−∞

ds
〈

ĵ−ĵ†+(s)
〉

−ρ++

∫ ∞

0

ds
〈

ĵ†+ĵ−(s)
〉

−ρ−−

∫ ∞

0

ds
〈

ĵ†+(s)ĵ−

〉

. (B3)

The equation for ρ−− follows from that for ρ++ by
interchanging indices + and −.

Now we have to evaluate environment correlators, such
as the prefactor of ρ++ in the second equation (e.g. for
j = r):

〈

r̂†+r̂−(s)
〉

= eiϕ
〈

e−iφ̂e−iφ̂(s)
〉

〈

r̂† r̂(s)
〉

. (B4)

By introducing the bare tunneling rates ΓR(L)0 =

2π DR(L)

〈

∣

∣

∣
t
R(L)
k

∣

∣

∣

2
〉

(compare Eq. (5)), we get, using

Eq. (42) (remember r̂ creates a reservoir electron):

〈

r̂†r̂(s)
〉

=
ΓR0

2π

∫

dε (1 − fR(ε)) e+iεs . (B5)

Here we have neglected any energy-dependence of the
tunnel-coupling and electrode DOS, assuming the rele-
vant voltages and temperatures to be sufficiently small
(but see below). The bath correlator in (B4) evaluates

to exp(−
〈

φ̂φ̂(s)
〉

−
〈

φ̂2
〉

), which can be expressed by us-

ing the definition (12) for P−(ω). There, we have to set

s 7→ −s because of the reversed order in the φ̂-correlator:

e−〈φ̂φ̂(s)〉−〈φ̂2〉 =

∫

dω P−(ω)eiωs . (B6)
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Therefore, we obtain:

∫ ∞

0

ds
〈

r̂†+r̂−(s)
〉

=

eiϕ ΓR0

2

∫

dε (1 − fR(ε)) P̃ ∗
−(−ε) , (B7)

with

P̃−(ε) =
1

π

∫

dω P−(ω)

∫ ∞

0

ds ei(ε−ω)s =

P−(ε) +
i

π

∫

dω
P−(ω)

ε − ω
. (B8)

The integral in the second line is understood as a
principal-value integral. By using the definitions (44)-
(47) introduced in the main text, Eq. (B7) becomes equal
to exp(iϕ)γ̃∗

R−/2. Other terms are evaluated similarly.

Appendix C: CURRENT EXPRESSION FOR

SEQUENTIAL TUNNELING THROUGH THE

DOUBLE-DOT

At T = 0, for the symmetric situation, the current I is
given by I = eγ I0[υ, δL, δR], with:

I0[υ, δL, δR] = 2 · [−δ2
L + (υ2 − 1)(1 + δ2

R) +

2δLδR(υ2 − 1) cosϕ + δ2
Lυ2 cos2 ϕ] ·

[−3δ2
L + 2δLδRυ2 + (1 + δ2

R)(υ2 − 3) +

2(υ2(1 + δ2
L + δ2

R) + δLδR(υ2 − 3)) cosϕ +

δL(δL + 2δR)υ2 cos2 ϕ]−1 (C1)
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3 P. Cedraschi and M. Büttiker, Phys. Rev. B 63, 165312

(2001); Annals of Physics, 289, 1 (2001).
4 A. D. Zaikin and D. S. Golubev, Physica B 280, 453

(2000).
5 F. Marquardt and C. Bruder, Phys. Rev. B 65, 125315

(2002).
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