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We consider a single-electron transistor (SET) whose central island is a nanomechanical oscillator.
The gate capacitance of the SET depends on the mechanical displacement, thus, the vibrations of
the island may influence the transport properties. Harmonic oscillations of the island and thermal
vibrations change the transport characteristics in different ways. The changes in the Coulomb
blockade oscillations and in the current noise spectral density help to determine in what way the
island oscillates, and allow to estimate the amplitude and the frequency of the oscillations.

The interplay of electric currents through nanostruc-
tures with mechanical degrees of freedom has attracted a
lot of interest recently, both from the experimental and
theoretical side [1–12]. One of the central questions of
this field of nanophysics is how the vibrations of the
oscillating part of a nanodevice influence its transport
properties and vice versa. A number of nanomechanical
devices were investigated in the last years, e.g., so-called
single-electron shuttles [3–8]. On the theoretical side, it
was shown recently that electric currents passing through
a dirty nanowire can stimulate its vibrations [13]. Indi-
cations for thermal vibrations of suspended single-wall
nanotubes doubly clamped between two contacts were
observed [14].

The nanomechanical properties of single-electron tran-
sistors (SETs) are of particular interest. Natural candi-
dates are SETs built from carbon nanotubes. For in-
stance, it was shown that the equilibrium shape of a sus-
pended nanotube studied as a function of a gate voltage
shows features related to single-electron electronics, e.g.,
Coulomb “quantization” of the nanotube displacement
[10].

In this report, we discuss how vibrations of the central
island of the SET change the current and the noise. We
show that the transport characteristics of the SET dif-
fer for islands oscillating thermally or harmonically. The
Coulomb blockade peaks are split for harmonic oscilla-
tions and are broadened by thermal oscillations. The
current noise spectrum has a peak at the frequency of
the island oscillations that reduces to a δ-peak when the
island oscillates harmonically. Therefore, measuring the
transport properties of the SET can help to determine in
what way the island oscillates, and to find the amplitude
and frequency of the oscillations.

The system that we want to study – a SET with a
mechanically oscillating island – is sketched in Fig. 1.
We assume that the island is coupled to the left (L) and
right (R) leads by tunnel junctions but can mechanically
vibrate. A suspended nanotube is a possible experimen-
tal realization of this scenario [10].

The charge of the island is coupled to the leads and
the gate through the capacitances CL, CR, and Cg(z); z
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FIG. 1: (a) Sketch of a single-electron transistor (SET) with
an oscillating island. The island is coupled to the left (L)
and right (R) leads by tunnel junctions, and its capacitance
to the gate Cg(z) depends on the coordinate z that measures
the deviation of the island from its equilibrium position. (b)
Equivalent circuit of the device.

is the transverse deviation of the island center from its
equilibrium position. When the island oscillates, the gate
capacitance changes with z, and therefore the transport
properties of the SET change.

We assume that electronic transport through the SET
can be described by sequential tunneling. In this case,
it is governed by four tunneling rates [15–17]: the rate
for electrons to tunnel onto the central region from the
left (ΓLn→n+1) and right (ΓRn→n+1) and the rates for elec-
trons to tunnel off the central region. The rates can be
calculated via Fermi’s golden rule. The energy change
corresponding to the first tunnel process is

∆ELn→n+1 = e(Vg − VL) + εn, (1)

εn = Ec

[
1

2
+ n+

CR(VR − Vg) + CL(VL − Vg)
e

]
,

where Ec = e2/CΣ and CΣ = CL+CR +Cg(z). Defining
γ(ε) ≡ −ε/(1− exp(βε)), the rates can be written as

ΓLn→n+1(z) =
1

e2RL
γ(∆ELn→n+1(z)) , (2)
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where RL is the resistance of the left junction. The other
rates can be written similarly. The charge state of the
SET is characterized by the probability ρn(t) to find n
excess electrons on the island. The time evolution of
ρn(t) is governed by the master equation [15–18]:

∂ρi
∂t

=
∑

a=±1

(Γi+a→iρi+a − Γi→i+aρi) , (3)

where Γi→j = ΓLi→j + ΓRi→j . The current and all its cu-
mulants can be expressed through Γ and ρ [19].

Equation (3) has to be supplemented with the equation
describing the oscillations of the island. The electrostatic
force that acts on the island is f(z) = ∂zCg(Vg − ϕ)2/2,
where ϕ = (CLVL+CRVR+CgVG+q)/CΣ is the potential
of the island, and q =

∑
n ρnne the average charge. The

motion of the island can then be described by a Langevin
equation,

z̈ + ηż + ω2
0z = y + [f(z)− f(0)]/m . (4)

Here m is the island mass, η ∼ ω0/Q where Q is the qual-
ity factor, and y is a random force simulating the inter-
action with the thermal bath correlated as 〈y(t)y(t′)〉 =
2ηmTδ(t − t′) [20]. Typically Q ∼ 103 − 104 [1] and
η � ω0. If the island is a nanotube, Cg is in general
a functional of the deviation z(x), where x is the coor-
dinate along the nanotube [10]. The rates depend only

on integral quantities like
∫ L

0
z(x)dx/L (L is the length

of the nanotube). Their dynamics can be described by
Eq. (4) unless the amplitude of the nanotube oscillations
exceeds its diameter by several orders of magnitude.

The current through the left junction [17] is

I(t) = e
∑

j

[ΓLj→j+1(t)− ΓLj→j−1(t)]ρj(t) . (5)

We are interested in the current averaged over a time
interval τ much larger than the characteristic period T0 of
the island oscillations: Ī =

∫ τ
−τ I(t, z(t))dt/(2τ), τ →∞.

The typical frequency of micromechanical oscillations
is ω0 ∼ 100MHz. If electrons tunnel through the SET
with a similar frequency, the current will be of the
order of I ∼ eω0 ∼ 10−11A. However, I in a typ-
ical SET is usually several orders of magnitude big-
ger, which allows for some simplifications. In general,
a state of the SET is characterized by the parameters
z, ż, and n, which have the probability distribution
P (z, ż, n; t). During the oscillation period T0 many elec-
trons go through the SET, hence we can approximate
P (z, ż, n; t) ≈ ρn(z, t)P (z, ż; t). This “adiabatic” as-
sumption justifies the use of Eqs. (1)-(4). With the same
accuracy we can neglect the time derivative in the mas-
ter equation (3) in the calculation of the average cur-
rent. Then, all the methods used to calculate the cur-
rent in standard SETs are applicable to the case with
the oscillating island [17]. Averaging the current over

time can be replaced by averaging over P (z), the den-
sity of the probability distribution for the deviation z,
i.e., Ī =

∫
P (z)I(z)dz. If the island oscillations are

thermally activated, P (z) ∝ exp(−z2/2〈z2〉T ), where
〈z2〉T = kBT/mω

2
0. If the island oscillates harmonically,

z(t) = z0 sin(ωt), then P (z) = 1/[π
√

1− (z/z0)2] for
|z| < z0 and zero otherwise. In these expressions, the
driving terms ∼ f in Eq. (4) that couple the current
in the SET with its mechanical degrees of freedom were
neglected. This term is usually much smaller than ω2

0z
on the left-hand side of Eq. (4) (e.g., for the SET pa-
rameters in recent experiments, see Ref. 10): the small
parameter is z0 maxi ∂z lnCi. The driving terms may
become important, e.g., when an ac-bias near the res-
onance frequency ω0 is applied to the terminal(s) of the
SET. The stochastic tunneling of the SET also transfers
energy to the oscillator. A sufficient dissipation can be
estimated using energy balance equations [21]. For typi-
cal parameters, we obtain an upper limit for the quality
factor Q < (Γ/ω0)(E0/Ec)

2/(z0∂z lnCg)
2 ≈ 106, where

Γ is the tunneling rate and E0 is the energy of the oscil-
lator. Thus, our calculations are relevant for transport
experiments in current nanomechanical systems.

In general, the current and noise in a SET cannot be
calculated analytically for arbitrary transport voltages
[22] even when the island is static. Analytical progress
can be made if we restrict ourself to the case of small
driving voltages near the onset voltage, and temperatures
much below the charging energy e2/CΣ, i.e., γ(ε) ≈ θ(ε)
in Eq. (2). In the case of a static island, the performance
of the SET as a transistor and electrometer reaches an
optimum in this regime [22]. In this region, the trans-
port characteristics of the SET are also most sensitive
to mechanical oscillations of the island, so this regime is
the most interesting for us. Only two states of the island
have to be taken into account; the probability ρ has only
two nonzero values ρn, ρn+1 [22]. If VL < VR an elec-
tron enters the island with the rate ΓLn→n+1(z) from the
left lead and goes away with the rate ΓRn+1→n(z) into the
right lead. The average current will be

Ī =

∫
dzP (z)

eΓLn→n+1(z)ΓRn+1→n(z)

ΓLn→n+1(z) + ΓRn+1→n(z)
, (6)

where C
(0)
g ≡ Cg(z = 0), and n = [−C(0)

g Vg/e], here [. . .]
means the integer part. Assuming that the capacitances
depend only weakly on z, Eq. (6) can be expanded with
respect to z. To proceed, we define

J(z) =
1

e

∆ELn→n+1∆ERn+1→n
RR∆ELn→n+1 + RL∆ERn+1→n

. (7)

Using ∆ERn+1→n = e(VR − VL)−∆ELn→n+1 and defining
z1, z2 to be the roots of the equations ∆ELn→n+1 = 0 and



3

FIG. 2: Current gate-charge characteristics for a symmet-
ric SET (RL = RR) with Cg � CL,R, VL = −VR = V/2,

Q0 = −C(0)
g Vg. (a) V = 0.2, (|V |/2 < Vosc), (b) V = 0.5,

(|V |/2 ≈ Vosc), (c) V = 1, (|V |/2 > Vosc). The voltage is
measured in units of |e|/2CΣ(z = 0), the current in units of

I0 = (e/C
(0)
g )/(RL + RR). The dashed curve corresponds

to a static island, the solid curve to a harmonically oscil-
lating island, z = z0 sin(ω0t); z0(∂zCg)/Cg = 5.6 · 10−3

(this is typical for SETs where the island is a nanotube
[10]; then z0 ≈ 5r, where r is a typical nanotube diame-
ter). The dotted curve in Fig. 1a illustrates what happens

if Vosc/(|e|/2C(0)
g ) = 5 > 1 and Eq. (8) is not valid. The

dash-dotted curves correspond to the case of thermal mo-
tion; the thermal average 〈z2〉T ≡ kBT/mω

2
0 is chosen to

be equal 〈(z0 sin(ω0t))
2〉t = z2

0/2. The integer part of Q0/e
is the number of electrons on the island in the static regime
when VL = VR = 0. The curves are periodic in the static case,
but not if the island oscillates. The areas under the peaks in
the static and in the dynamical cases are the same.

∆ERn+1→n = 0, we get from Eq. (6)

Ī ≈
∫ max(z1,z2)

min(z1,z2)

dzP (z)[J(0)+

z(∂zJ(z)|z→0) + z2 1

2
(∂2
zJ(z)|z→0)] . (8)

This formula is valid also for VL > VR. Using Eq. (1)
we find z2 − z1 ≈ e(VR − VL)/∂zεn|z→0. Thus, if z0 is
a characteristic amplitude of island oscillations then it is
natural to define the voltage scale

Vosc =
z0

e
(∂zεn|z→0) . (9)

In the limiting case CL, CR � C
(0)
g ,

Vosc =
z0∂zCg |z→0

[C
(0)
g ]2

e(n+ 1/2) . (10)

Equation (8) is valid if Vosc < e/CΣ. If the driving volt-
ages applied to the SET terminals are much larger than
Vosc, the integration limits in Eq. (8) can be extended to
infinity because they far exceed z0, the scale of decay of
P (z). The second term in Eq. (8) vanishes and

Ī = I(z = 0) +
1

2
〈z2〉 ∂

2

∂z2
I(z)|z→0 , (11)

where 〈z2〉 =
∫
P (z)z2dz. The first term in Eq. (11) is

the current for a static island. If the driving voltages
applied to SET terminals are smaller than Vosc then the
second term (linear in z) in Eq. (8) does not vanish; in
this regime the current-voltage characteristics is strongly
influenced by island oscillations. The small parameter
in the expansion Eq. (8) is z0∂z lnCg . The second term
in Eq. (11) is of second order in this parameter. The
oscillations of the island will modify the Coulomb gap in
the I − V characteristics within a voltage band of width
of order Vosc.

The I − Vg characteristics of a symmetric SET (RL =
RR, CL = CR � Cg) with an oscillating island is shown
in Fig. 2. The dashed curves correspond to the case of
the static island. The solid and dash-dotted curves show
the case of a harmonically oscillating island and an is-
land subject to thermal equilibrium fluctuations, respec-
tively. Figs. 2a-c also show how the I−Vg characteristics
change when the driving voltage V is smaller, of the order
of, or larger than Vosc. Within each peak of the curves,
n is constant, therefore Vosc is also constant within the
peak. The most interesting case is shown in the first
panel of Fig. 2a. For the harmonically oscillating island,
the peaks split and their width becomes larger with the
characteristic scale Vosc; when the island moves due to
thermal activation the peaks broaden with Vosc but do
not split. Thus, the type of motion of the island leaves
a characteristic trace in the I − Vg plot. Equation (8)
describes the I − Vg characteristics well if the peaks do
not overlap, like in Figs. 2a and b. It follows from Eq. (6)
that the areas under the peaks in the static and dynamic
cases are equal. The I − Vg characteristics is periodic
in the static case, but not periodic for an oscillating is-
land because Vosc changes from peak to peak, see, e.g.,
Eq. (10). For this graph, we used the parameters of the
nanotube model of the island (see Ref. 10); we chose,
e.g, Cg(z) = L/2 ln [2(R− z)/r], where r = 0.65nm and
L = 500nm are the nanotube radius and length, and
R = 100nm is the distance to the gate. If CL, CR, and
Cg are of the same order, the I − Vg characteristics is
qualitatively similar to what is shown in Fig. 2. For an
asymmetric junction, RR 6= RL, the peaks in Fig. 2 be-
come asymmetric as well (not shown).
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FIG. 3: Fano factor for V < Vosc. The dashed line corre-
sponds to the static case, the solid line to the harmonically
oscillating island, and the dash-dotted line to the thermally
driven island. The average square amplitude of the island os-
cillations are equal for the harmonically oscillating island and
the case of thermal equilibrium.

We finally discuss the current noise in a SET with a
moving island. When the island oscillates, the irreducible
current-current correlator S(τ,Θ) = 〈〈IL(Θ+τ/2)IL(Θ−
τ/2)〉〉 depends on both τ and Θ (rather than only on τ
as in the case of the static island). However, since the
charging events in the SET are correlated on time scales
much shorter than the period of the island oscillations,
the dependence of S on τ is much stronger than on Θ,
and the zero-frequency noise can be found as

∫
S(τ,Θ)dτ ,

where the bar means averaging over Θ. In other words,
the low-frequency noise can be calculated at a given po-
sition of the island (see, e.g., Ref. 17) and then averaged
over time as it was already done for the current above.
The result of this procedure is presented in Fig. 3 which
shows the dependence of the Fano factor [23] on Vg . Here
we assumed that the driving voltage is smaller than Vosc,
i.e., the system is in the regime in which the influence of
the oscillations of the island on the transport properties
of the SET is maximal. For harmonic oscillations of the
island the dips in the Fano factor split; the scale of the
splitting is Vosc. In contrast to that, the dips are washed
out by thermal equilibrium oscillations of the island. In
the region between the peaks, the Fano factor is strongly
suppressed for a thermally vibrating island.

So far we assumed that the noise frequency is
much below the frequency of the island oscillations,
ω0. We now consider the noise spectral density, i.e.,
the Fourier transform S(ω,Θ) of S(τ,Θ). If ω ap-
proaches ω0, the correction to the noise from the mo-
tion of the island is ∼ (∂zI |z=0)2z2

ω, where z2
ω =∫

dτ exp(iωτ)z(Θ + τ/2)z(Θ− τ/2) is the spectral den-
sity of the deviation z at frequency ω. It has a δ-
peak at ω0 if the island oscillates harmonically. In con-
trast, if the island moves due to thermal activation,
z2
ω = 2ηkBT/[m((ω2−ω2

0)2 +ω2η2)] [20], the noise peak
has a width of the order of the oscillation damping factor

η [24], see Eq. (4) [25]. Thus, measuring the noise spec-
trum allows to find the frequency of island oscillations
and gives information on the nature of the oscillations
[26].

In conclusion, we have discussed how vibrations of the
island in a SET change its transport properties, viz., the
average current, the Fano factor, and the noise spectral
density. The transport characteristics of the SET can be
used to determine the nature of island motion, in par-
ticular, to estimate the amplitude and frequency of its
oscillations.
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