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Cold Bosonic Atoms in Optical Lattices
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The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be described
by a Bose-Hubbard model where the system parameters are controlled by laser light. We study the
continuous (zero temperature) quantum phase transition from the superfluid to the Mott insulator phase
induced by varying the depth of the optical potential, where the Mott insulator phase corresponds to
a commensurate filling of the lattice (“optical crystal”). Examples for formation of Mott structures
in optical lattices with a superimposed harmonic trap and in optical superlattices are presented.
[S0031-9007(98)07267-6]
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Optical lattices—arrays of microscopic potentials in-
duced by the ac Stark effect of interfering laser beams—
can be used to confine cold atoms [1–7]. The quantized
motion of such atoms is described by the vibrational mo-
tion within an individual well and the tunneling between
neighboring wells, leading to a spectrum describable as a
band structure [3]. Near-resonant optical lattices, where
dissipation associated with optical pumping produces
cooling, have given filling factors of about one atom per
ten lattice sites [1,6]. Higher filling factors will require
lower temperatures, and hence will also require mini-
mization of the optical dissipation. This can be achieved
in a far-detuned optical lattice (especially with blue detun-
ing), where photon scattering times of many minutes have
been demonstrated [2]. Thus the lattice then behaves as a
conservative potential, which could be loaded with a Bose
condensed atomic vapor [8,9], for which present densities
would correspond to tens of atoms per lattice site.

In this Letter we will study the dynamics of ultracold
bosonic atoms loaded in an optical lattice. We will show
that the dynamics of the bosonic atoms on the optical
lattices realizes a Bose-Hubbard model (BHM) [10–16],
describing the hopping of bosonic atoms between the
lowest vibrational states of the optical lattice sites, the
unique feature being the full control of the system’s
parameters by the laser parameters and configurations.

The BHM predicts phase transition from a superfluid
(SF) phase to a Mott insulator (MI) at low temperatures
and with increasing ratio of the on site interaction U
(due to repulsion of atoms) to the tunneling matrix
element J [10]. In the case of optical lattices this
ratio can be varied by changing the laser intensity: with
increasing depth of the optical potential the atomic wave
function becomes more and more localized and the on
site interaction increases, while at the same time the
tunneling matrix element is reduced. In the MI phase the
density (occupation number per site) is pinned at integer
n  1, 2, . . . , corresponding to a commensurate filling of

the lattice, and thus represents an optical crystal with
diagonal long range order with the period imposed by the
laser light. The nature of the MI phase is reflected in the
existence of a finite gap U in the excitation spectrum.

Our starting point is the Hamilton operator for bosonic
atoms in an external trapping potential
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with csxd a boson field operator for atoms in a given
internal atomic state, V0sxd is the optical lattice poten-
tial, and VT sxd describes an additional (slowly varying)
external trapping potential, e.g., a magnetic trap (see
Fig. 1a). In the simplest case, the optical lattice poten-
tial has the form V0sxd 

P
3
j1 Vj0 sin2skxjd with wave

vectors k  2pyl and l the wavelength of the laser
light, corresponding to a lattice period a  ly2. V0 is
proportional to the dynamic atomic polarizability times
the laser intensity. The interaction potential between the

FIG. 1. (a) Realization of the BHM in an optical lattice (see
text). The offset of the bottoms of the wells indicates a trapping
potential VT . (b) Plot of the scaled on site interaction UyER
multiplied by ayas s¿1d (solid line; axis on left-hand side of
graph) and JyER (dashed line; axis on right-hand side of graph)
as a function of V0yER ; Vx,y,z0yER (3D lattice).
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atoms is approximated by a short-range pseudopotential
with as the s-wave scattering length and m the mass
of the atoms. For single atoms the energy eigenstates
are Bloch wave functions, and an appropriate superpo-
sition of Bloch states yields a set of Wannier functions
which are well localized on the individual lattice sites.
We assume the energies involved in the system dynam-
ics to be small compared to excitation energies to the
second band. Expanding the field operators in the Wan-
nier basis and keeping only the lowest vibrational states,
csxd 

P

i biwsx 2 xid, Eq. (1) reduces to the Bose-
Hubbard Hamiltonian
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where the operators n̂i  b
y
i bi count the number of

bosonic atoms at lattice site i; the annihilation and crea-
tion operators bi and b

y
i obey the canonical commu-

tation relations fbi , b
y
j g  dij. The parameters U 
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the on site repulsion of two atoms on the lattice site
i, J 
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2m =2 1 V0sxdgwsx 2 xjd is
the hopping matrix element between adjacent sites i, j,
and ei 
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an energy offset of each lattice site.
For a given optical potential J and U are readily

evaluated numerically. For the optical potential given
above the Wannier functions can be written as products
wsxd  wsxdwsydwszd which can be determined from
a one-dimensional band structure calculation. Figure 1b
shows U and J as a function of V0 in units of the
recoil energy ER  h̄2k2y2m. Both the next-nearest
neighbor amplitudes and the nearest-neighbor repulsion
are typically 2 orders of magnitude smaller and can thus
be neglected. Qualitative insight into the dependence of
these parameters is obtained in a harmonic approximation
expanding around the minima of the potential wells. The
oscillation frequencies in the wells are nj 

p

4ERVj0 yh̄
which gives the separation to the first excited Bloch
band. The oscillator ground state wave function of
size aj0 

p

h̄ymnj allows us to obtain an estimate
for the on site interaction U  2h̄n̄sasyā0dy

p

2p with
the bar indicating geometric means. Consistency of our
model requires as ø aj0 ø ly2 and DEi 

1

2 Unisni 2
1d ø h̄nj . The first set of inequalities follows from the
pseudopotential approximation and our requirement of a
(large) energy separation from the first excited band. The
second inequality expresses the requirement that the on
site interaction associated with the presence of ni particles
at site i, which in our model is calculated in perturbation
theory, must be much smaller than the excitation energy
to the next band. These inequalities are readily satisfied
in practice.

According to mean-field theory (MFT) in the homo-
geneous case [10,11] (see also [14]) the critical value of

the MI-SF transition for the phase n  1 is at the criti-
cal value UyzJ ø 5.8 with z  2d the number of nearest
neighbors. According to Fig. 1b this parameter regime
is accessible by varying V0 in the regime of a few tens
of recoil energies. As an example, for sodium [9] we
have ERy"  2p 3 8.9 kHz for a red detuned laser with
l  985 nm, and the critical values for the first MI phase
in 1D, 2D, and 3D are given by Vx0  10.8, Vx,y0  14.4,
and Vx,y,z0  16.5ER , and we assumed in 1D Vy,z0 

25ER for the y and z directions in order to suppress tun-
neling in these other dimensions, and Vz0  25ER for
2D. For V0  15 we have U  0.15 and J  0.07 in
units of ER . For a blue detuning [9] l  514 nm we
find ERy"  2p 3 32 kHz and the corresponding values
are Vx0  8.4, Vx,y0  11.9, and V0  14.1; U  0.2,
J  0.02 for V0  10 in units of ER . For V0 ø 10ER the
single particle density at the center of the optical potential
wells will be of the order of 1ya3

0 ø 1015 cm23. Thus we
must discuss the role of collisions between ground state
atoms (in the presence of a laser field) as a loss and de-
coherence mechanism [17]. This question is directly re-
lated to the problem of collisional loss of Bose-Einstein
condensates in optical traps as studied in [9]. We empha-
size that in the Mott phase with a single particle per site
(n  1) two and more particle loss channels are absent.
For a MI phase with n  2 there will be two particle
losses: if we take as an order of magnitude the numbers
published in Ref. [18] we estimate the corresponding life-
time to be .10 s. For n  3 the lifetime due to three
atom losses [18] will be of the order of 1y10 s.

We have performed mean-field calculations for 1D
and 2D configurations, as well as an exact diagonaliza-
tion of the BH Hamiltonian in 1D to illustrate the for-
mation of the Mott insulator phase in optical lattices,
in particular, for the inhomogeneous case. Our mean-
field calculations are based on a Gutzwiller ansatz for
the ground state wave function jCMFl 

Q

i jfil with
jfil 

P`
n0 f

sid
n jnli , where jnli denotes the Fock state

with n atoms at site i [11]. We minimize the expectation
value of the Hamiltonian,

kCMF jHjCMFl 2 mkCMF j
X
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with respect to the coefficients f
sid
n . The Lagrange

multiplier m enforces a given mean particle number N 
P

iknil. This corresponds to a calculation in the grand
canonical ensemble with chemical potential m at tempera-
ture T  0. A MI phase is indicated by solutions in the
form of single Fock states, jfil ! jnili . A signature
of a MI phase is integer occupation number (density)
ri  kn̂il and fluctuations, s2

i  skn̂2
i l 2 kn̂il

2dykn̂il !
0. Solutions in the form of superposition of Fock
states result in a mean-field fi  kbil fi 0, indicating
the presence of a SF component. The angular brackets
indicate an average in the mean-field state. In the
homogeneous case (ei  0) the phase diagram in the
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J-m plane consists of a series of lobes [10]. Inside the
lobes (i.e., for J small in comparison with the on site
repulsion energy U) the system is a Mott phase; outside it
is superfluid.

In Fig. 2a we plot the density rsx, yd and the super-
fluid component jfsx, ydj2 in an optical lattice with a
superimposed isotropic harmonic potential at the lattice
points sxya, yyad  si, jd (i, j  0, 61, . . . ,). Figure 2a
shows a MI phase with two atoms per site at the center
of the trap sr  2d surrounded by a Mott phase with a
single atom sr  1d and superfluid rings between the MI
phases. For smaller values of the chemical potential only
a single Mott phase would exist at the trap center. Quali-
tatively, this behavior is readily understood on the basis
of the phase diagram in the homogeneous case [10] if we
note that the offset ei  VT sxid leads to an effective local
chemical potential m 2 ei .

By use of interfering laser beams at different angles
[4], one can produce a superlattice, in which the offset of
the optical potential is modulated periodically in space on
a scale larger than the lattice period. Figures 2b and 2c
show the density rsx, yd and the scaled density fluctua-
tions ssx, yd of Mott structures formed in a superlattice.

FIG. 2. (a) MI and SF phases in an optical poten-
tial and harmonic trap in 2D. Parameters: U  35J,
VT sx, yd  Jsx2 1 y2dya2, and m  50J. Density rsx, yd
(left plot) and superfluid density jfsx, ydj2 (right plot).
(b) Superlattice in 2D. Density rsx, yd (left plot) and
fluctuations ssx, yd (right plot). Parameters: U  45J,
VT sx, yd  30J fsin2spxy11ad 1 sin2spyy11adg, and m 

25J. (c) Same as (b) with m  35J. Four superlattice wells
are shown.

With increasing m we first find a Mott structure at the
bottom of the superlattice potential, until the atoms are no
longer confined to a particular well of the superlattice but
form bridges connecting the superlattice wells.

In general, specific Mott structures can be designed
by an appropriate choice of the laser configurations.
An experimental signature to detect the Mott state is
observation of reduced density-density fluctuations [see
ssx, yd in Fig. 2]. This can be monitored directly in light
scattering. Alternatively, the MI phase can be detected
spectroscopically by observing the gapped particle-hole
excitations.

In 1D and for systems with few atoms per superlattice
well we expect fluctuations to be important, and the
application of MFT becomes questionable. On the other
hand, in this limit it is straightforward to diagonalize the
Bose-Hubbard Hamiltonian exactly. Figure 3 is a plot
of the density and the number fluctuations for the exact
ground state for N  5 atoms as a function of Vx0. With
increasing Vx0 the density shows a clear transition to the
MI phase r  1, even for this very small sample. The
number fluctuations are suppressed in the MI phase but
remain finite. The phase transition (which according to
MFT in the homogeneous limit is expected for V0 

7.4ER) is smeared out, and fluctuations are strongly
suppressed only for larger values of Vx0. Qualitatively,
the mean-field theory for the inhomogeneous case agrees
well with the exact calculations, even for these small
systems. Figure 3 can be viewed as an adiabatic transfer
into the MI phase as the laser intensity is varied slowly as
a function of time.

The atomic level scheme of Fig. 1 allows only one
adjustable parameter, the depth of the optical potential V0.
To adjust the tunneling matrix element J independently
of the on site interaction U we can employ atomic
configurations with two internal ground state levels jg1l
and jg2l, which are connected by an off-resonant Raman
transition (Fig. 4a).

We assume that the two internal states move in optical
potentials which are shifted relative to each other by ly4,
as is the case when they have polarizabilities of opposite
sign. Expanding the bosonic field operators for the two
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FIG. 3. Density r and fluctuations s for the exact ground
state in 1D for N  5 atoms in a harmonic well as a
function of Vx0yER for seven lattice cells. The parameters
are asya  1.1 1022 (corresponding to Na and l  514 nm,
Vy0  Vz0  40ER) and VT sxd  0.06 ERsxyad2.
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FIG. 4. (a) Atomic level scheme (see text). (b) Checkerboard
pattern with a MI phase on one sublattice and a SF on the
other obtained in MFT for the two species BHM, with parame-
ters: m  25J, Uaa  Ubb  45J, Uab  0, d  225J, and
ei  0.

internal states we obtain a two-species Bose-Hubbard
Hamiltonian
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with ai and bi bosonic destruction operators referring to
atoms in the internal states jg1l and jg2l, respectively.
The first term in the Hamiltonian describes the Raman
induced hopping between adjacent cells with coupling
J 

1

2

R

d3
x wasxdpVeffsxdwbsx 2 ly4d, where Veff is

the effective two-photon Rabi frequency (including a
possible phase). Direct tunneling has been neglected. The
second and third term contain offsets due to a trapping
potential, and, in addition, a Raman detuning term 2d for
atoms in the state jg2l. The second and third lines contain
on site interactions of atoms a and b described by Uaa

and Ubb , and a nearest-neighbor interaction Uab whose
value depends on the overlap of the Wannier functions
between a and b. A Raman detuning d shifts the chemical
potential of species b relative to a. We can adjust the
value of this detuning to generate checkerboard patterns,
e.g., a MI phase of species a and a Mott phase of species
b can coexist with different site occupation numbers. As
an example, Fig. 4b plots the density rsx, yd for a specific
2D homogeneous situation where a MI phase jg1l coexists
with a superfluid component in jg2l.

While the present discussion has emphasized periodic
(ordered) Bose systems, adding a further optical poten-
tial with incommensurate lattice spacing allows the real-
ization of a (pseudo)random potential [5] which leads to
the study of disordered Bose systems and appearance of
a Bose glass phase [10,15]. A study of the growth and
fluctuations of the MI phase due to coupling to a finite
temperature particle reservoir based on a master equation

treatment [19] will be presented elsewhere. The ability to
manipulate both the lattice and the system parameters in
our realization of a Bose-Hubbard model brings a new as-
pect to condensed matter physics: models and simplifying
assumptions may be systematically investigated using the
experimental techniques of quantum optics.
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