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We propose a way to measure the momentum p of a nanomechanical oscillator. The p-detector is
based on two tunnel junctions in an Aharonov-Bohm-type setup. One of the tunneling amplitudes
depends on the motion of the oscillator, the other one not. Although the coupling between the
detector and the oscillator is assumed to be linear in the position x of the oscillator, it turns out
that the finite-frequency noise output of the detector will in general contain a term proportional
to the momentum spectrum of the oscillator. This is a true quantum phenomenon, which can be
realized in practice if the phase of the tunneling amplitude of the detector is tuned by the Aharonov-
Bohm flux Φ to a p-sensitive value.

PACS numbers: 72.70.+m,73.23.-b,85.85.+j

In nano-electromechanical (NEM) systems, it is the po-
sition of the oscillator that typical measurement devices
(like tunnel junctions or single electron transistors) are
coupled to. Using these detectors, position measure-
ments with sensitivities close to the standard quantum
limit have already been observed [1–3]. From a funda-
mental point of view, it is desirable to go further, i.e. to
prepare and manipulate NEM oscillators in the quantum
regime. A quantum NEM system would allow us to study
an ideal realization of a continuous variable quantum sys-
tem [4]. The exploration of such systems has to be seen
as complementary to the wide study of two-level systems
done in the context of quantum computing.

In order to be able to fully characterize a continuous
variable quantum system that is described by two non-
commuting operators x̂ and p̂, we need to be able to mea-
sure expectation values of moments of both of them [5].
Only this allows, for instance, to detect the entanglement
between two (or more) NEM devices [6]. The literature
already contains proposals regarding quantum measure-
ments of the momentum of macroscopic objects like those
used for gravity-wave detection [7]. However, none of
these proposals have been realized in practice. In this Let-
ter, we propose a realistic and feasible way to measure the
momentum of a nanometer-sized resonator. This is a non-
trivial task since the coupling between the detector and
the oscillator is naturally described by an x-dependence
but not a p-dependence. Nevertheless, the proposed
setup (shown in Fig. 1b) allows for a measurement of the
momentum spectrum Sp(ω) =

∫

dteiωt〈{p̂(t), p̂(0)}〉 of
the oscillator. This can be done because we have found a
way to tune the phase of the tunnel coupling term that is
sensitive to the position of the oscillator by an Aharonov-
Bohm (AB) flux Φ, see Fig. 1b. Related setups have been
investigated recently in the context of dephasing due to
the coupling of an AB ring structure to a NEM device
[8]. A typical position detector which has been analyzed
theoretically in great detail [9–15] and experimentally re-
alized [16, 17] is depicted in Fig. 1a. It shows a single

tunnel junction coupled to a NEM oscillator. A thorough
analysis of the coupled quantum system leads to the re-
sult that the output signal of the detector is sensitive to
the position spectrum Sx(ω) =

∫

dteiωt〈{x̂(t), x̂(0)}〉 of
the oscillator. The modification of the detector shown in
Fig. 1b instead allows for a measurement of Sp(ω).
The Hamiltonian of the coupled system H = Hosc+HB +
Htun is the sum of the Hamiltonian of the (quantum)
harmonic oscillator Hosc (with mass M and frequency Ω),
the bath Hamiltonian HB (describing the leads of the
detector), and the tunneling Hamiltonian Htun (which
couples the dynamics of the electrons that tunnel across
the junction to the motion of the oscillator):

Hosc = ~Ω(a†a +
1

2
) =

p̂2

2M
+

MΩ2x̂2

2
, (1)

HB =
∑

k

εkc†kck +
∑

q

εqc
†
qcq , (2)

Htun = T (x̂)Y †
∑

k,q

c†kcq + T †(x̂)Y
∑

k,q

c†qck . (3)

Here, k (q) is a wave-vector in the right (left) lead, c(†) is
the electron annihilation (creation) operator, and Y (†)

is an operator that decreases (increases) m, the num-
ber of electrons that have tunneled through the system,
by one. It allows one to keep track of the transport
processes during the evolution of the system. For typ-
ical nanoresonators, the mass M varies between 10−18

and 10−15 kg, and the resonance frequency is usually
1MHz < Ω/2π < 1GHz [18].
We first discuss the model in the standard configuration
shown in Fig. 1a and later on describe the new setup
in Fig. 1b. For small displacements with respect to the
tunneling length (which is the relevant regime in typi-
cal experiments on NEM devices), the tunneling ampli-
tude T (x̂) can be taken as a linear function of x̂, namely
T (x̂) = (eiϕ0/2πΛ)

(

τ0 + eiητ1x̂
)

, where τ0 and τ1 are
real, and Λ is the density of states. The phases ϕ0 and
η describe details of the detector-oscillator coupling [19].
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FIG. 1: (color online) a Position detector. The figure shows schematically a position detector of the motion of a NEM oscillator
(red). The detector is based on a tunnel junction with a tunnel matrix element T (x̂) which depends on the position of the
oscillator. The shaded regions (yellow) are assumed to be conducting. b Position and/or momentum detector. The figure
illustrates a detector which contains two tunnel junctions that form a loop threaded by a magnetic flux Φ. Tuning the flux will
change the performance of the detector from being able to detect the power spectrum of the position operator of the oscillator
to being able to detect the power spectrum of the momentum operator of the oscillator. For clarity, the two insets show a
simplified illustration of the detectors in a and b.

It can be shown that our detector is quantum-limited for
any η, according to the definition of a quantum-limited
detector in Ref. [14]. Within the single-junction setup
(Fig. 1a), the relative phase η is sample-dependent and
cannot be tuned experimentally. In a typical device,
the x-dependence of the phase of T (x̂) is much weaker
than the x-dependence of the amplitude. Then, we can
set η ≃ 0, and the tunnel junction acts as a position-
to-current amplifier where the frequency-dependent cur-
rent noise SI(ω) of the detector contains a term propor-
tional to the position spectrum Sx(ω) of the oscillator,
i.e. ∆SI(ω) = SI(ω)−2e〈I〉 ≈ λ2

xSx(ω) with λx the gain
of the amplifier [13, 20].

We now demonstrate that a tunnel junction with a
phase η = π/2 modπ acts as a momentum detector
and ∆SI(ω) ≈ λ2

pSp(ω), where λp is the gain of the
momentum-to-current linear amplifier. In the steady-
state regime, Sx(ω) and Sp(ω) are simply related to each
other by Sp(ω) = (ω/Ω)2(〈p2〉/〈x2〉)Sx(ω). Our setup al-
lows to measure both Sx(ω) and Sp(ω) and to verify this
relation. The critical requirement to build a momentum
detector is to be able to vary η experimentally. This can
be done using the AB-type setup shown in Fig. 1b: a
metallic ring where one arm is a standard tunnel junc-
tion position detector with tunneling amplitude Td(x̂),
and the other arm is a position-independent tunnel junc-
tion with tunneling amplitude Tu. A similar device in
a different context (without a position-dependent tunnel-
ing amplitude) has been realized in the electronic Mach-
Zehnder interferometer [21].

Just like in the standard AB effect, it is possible to
introduce a phase-difference between the two transmis-
sion channels by considering a finite magnetic flux Φ
in the area defined by the loop. The total transmis-
sion amplitude T (x̂, Φ) of the device is the sum of both
tunneling amplitudes [22]. Since only one arm shows
a position-dependence, the induced phase difference be-

tween the two arms affects the position-independent and
the position-dependent parts of the tunneling amplitudes
τ0 and τ1 in a different way. Explicit calculation shows
that the tunneling amplitude is given (up to a global
gauge-dependent phase factor) by T (x̂, Φ) = τ0(Φ) +
eiη(Φ)τ1x̂ with

τ2
0 (Φ) = τ2

0,d + τ2
0,u + 2τ0,dτ0,u cos

(

2π
Φ

Φ0
+ ϕ0,d − ϕ0,u

)

,

η(Φ) = 2π
Φ

Φ0
+ ϕ1,d − ϕ0,u

− Arg
(

τ0,u + ei(2π Φ

Φ0
+ϕ0,d−ϕ0,u)τ0,d

)

, (4)

where we have defined Tu ≡ eiϕ0,uτ0,u, Td ≡ eiϕ0,dτ0,d +
eiϕ1,dτ1,dx̂, τ1 ≡ τ1,d, and Φ0 = h/e [23]. The position-
independent part of the tunneling amplitude τ0(Φ) dis-
plays the standard AB oscillations as a function of flux.
Likewise, the relative phase η(Φ) shows a distinct de-
pendence on the flux. Importantly, for τ0,u > τ0,d,
the phase η(Φ) can be tuned continuously in the whole
range [−π, π]. In the limit, where τ0,u ≫ τ0,d, η(Φ) ∼
2π Φ

Φ0
+ η(Φ = 0) varies linearly with the applied flux.

In the opposite regime τ0,u ≪ τ0,d, η no longer depends
on Φ. Therefore, it is crucial to put the tunneling am-
plitudes in the regime where η(Φ) can be tuned to π/2.
We will show below that a feasible way to calibrate η(Φ)
to the p-sensitive point π/2 is a measurement of the flux
dependence of the current through the AB detector.
Similarly to Refs. [13, 20], we study the coupled system
using the quantum equation of motion for the charge-
resolved density matrix within the Born-Markov approx-
imation. Here, the Born approximation corresponds to
treating tunneling in second-order perturbation theory.
The Markov approximation is valid as long as typical
correlation times in the leads are short as compared to
the relevant time scales of the dynamics of the oscillator,
i.e. eV ≫ ~Ω.
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It has been derived previously that, under the assump-
tion that the tunneling amplitude depends linearly on x̂,
the equation of motion for the reduced density matrix
of the oscillator is of Caldeira-Leggett form [12, 13, 15].
Thus, it contains both a damping and a diffusion term.
When the electron temperature is much smaller than the
applied bias (and, for definitiveness, taking V > 0), the
detector-induced damping coefficient is γ+ = ~τ2

1 /(4πM)
and the diffusion coefficient is D+ = 2Mγ+kBTeff with
Teff = eV/2kB.
In general, the oscillator is not only coupled to the de-
tector but also to the environment. The coupling to this
additional bath is controlled via γ0 = Ω/Q0 (related to
the finite quality factor Q0 of the mode, which in current
experiments varies from 103 to 106 [18]) and the associ-
ated diffusion constant D0 = 2Mγ0kBTenv that must be
added to the detector-induced damping and diffusion con-
stants to find the total damping coefficient γtot = γ++γ0

and the total diffusion coefficient Dtot = D0 + D+. Tenv

denotes the temperature of the environment. In typical
experiments, it varies from 30mK to 10K. Within our
model, all the these system parameters are independent
of the applied flux.
It is now straightforward to calculate the current and
the current noise of the detector. We skip the details
here (see Ref. [20] for η = 0) and directly turn to the
results. The average current of the detector is given by

I =
e2V

h

(

τ2
0 + 2 cosητ0τ1〈x〉 + τ2

1 〈x
2〉

)

−
2eγ+τ0

~τ1
sin η〈p〉 − eγ+. (5)

For η 6= 0 modπ, the average current contains a term pro-
portional to the average momentum of the oscillator that
does not vary with the applied bias [15]. However, since
〈p〉 = 0 in the steady-state, the average current contains
no information about the momentum of the oscillator.
Therefore, the current of the detector can not be used as
a p-detector in the steady-state. Nevertheless, the cur-
rent is important to calibrate η to the p-sensitive value
π/2. A careful analysis of the current I as a function of Φ
shows that the inflection points of I(Φ) correspond pre-
cisely to values of η = π/2 modπ. Therefore, we can use
a current measurement to tune η to a p-sensitive value.
In the experimentally relevant regime, where τ2

1 〈x
2〉 ≪

τ2
0 , and for ω ∼ Ω, the dominant contributions to the

current power spectrum of the detector are

SI(ω) = 2e〈I〉 + 8e2ω

∫ ∞

0

dt sin(ωt) ×

[

eV

h
cos ητ0τ1〈〈xm〉〉 −

γ+τ0

~τ1
sin η〈〈pm〉〉

]

, (6)

where 〈〈ab〉〉 = 〈ab〉 − 〈a〉〈b〉. We now further analyze
the added noise due to the presence of the oscillator,
∆S = SI(ω) − 2e〈I〉. This noise spectrum is the sum

of a contribution arising due to correlations between the
transfered charge m and position (term ∼ 〈〈xm〉〉 in Eq.
(6)), which we call ∆S1, and one due to correlations
between m and the momentum of the oscillator (term
∼ 〈〈pm〉〉 in Eq. (6)), which we call ∆S2. The full spec-
trum is therefore ∆S = ∆S1 + ∆S2 with

∆S1(ω) =
[

λ2
x

(

1 −
~Ω

2eV

∆x2
0

〈〈x2〉〉

)

(7)

−λxλp

(

MΩ

2π
τ2
1 ∆x2

0

eV

MΩ2〈〈x2〉〉

)

]

Sx(ω)

−λxλp

(

1 −
MeV

〈〈p2〉〉

)

〈〈p2〉〉

M

4(Ω2 − ω2)

4γ2
totω

2 + (ω2 − Ω2)2

∆S2(ω) = λ2
p

(

1 −
MeV

〈〈p2〉〉

)

Sp(ω) (8)

+
[

λpλx

(

1 −
~Ω

2eV

∆x2
0

〈〈x2〉〉

)

−λ2
p

(

MΩ

2π
τ2
1 ∆x2

0

eV

MΩ2〈〈x2〉〉

)

]4MΩ2〈〈x2〉〉(Ω2 − ω2)

4γ2
totω

2 + (ω2 − Ω2)2
,

where the position and the momentum gain are given
by λx = 2eτ0τ1(eV/h) cos η and λp = (e/2πM)τ0τ1 sin η,
respectively. We now discuss several limits of the cur-
rent noise SI(ω) of the detector in the case of a gen-
eral phase η. For η = 0 modπ, we recover Eq. (30) of
Ref. [20] – the position detector result. More interest-
ingly, for η = π/2 modπ, λx = 0 and the detector output
contains only two terms: The first one is proportional to
Sp(ω) and therefore peaked around Ω. The second one is
proportional to (Ω2−ω2) and contributes negligibly near
resonance ω ≈ Ω. Hence, for η = π/2, we obtain

∆S(ω ≈ Ω) ≈ λ2
p

(

1 −
MeV

〈〈p2〉〉

)

Sp(ω). (9)

Thus, the added noise is directly proportional to the mo-
mentum spectrum of the oscillator. This is the key result
of our Letter.
From the parameter dependence of each gain, we can es-
timate that the momentum signal at η = π/2 should be
typically smaller than the position signal at η = 0 by a
factor (eV/~Ω)2. Nevertheless, it is unambiguously possi-
ble to identify a p signal in the current noise. We now de-
scribe three different ways to do this. First, since λx ∝ V
while λp is independent of V , the bias voltage dependence
of the noise spectrum can also be used to confirm that
momentum fluctuations are measured. Secondly, for an
oscillator undergoing Brownian motion, the temperature
dependence of both signals differs qualitatively. Indeed,
in our detector, the coupling to the momentum is a quan-
tum mechanical effect that cannot be captured by consid-
ering a classical fluctuating junction. Like in the position
detector case, the momentum signal is reduced by a quan-
tum correction (the term proportional to −MeV/〈〈p2〉〉
in Eq. (9)) that arises from the finite commutator of x̂
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and p̂. However, there is a fundamental difference be-
tween the x-detector result (Eq. (7) of Ref. [13]) and
the p-detector result (Eq. (9)). In the former case, the
quantum corrections are always small compared to the
leading terms and therefore the peak at resonance is al-
ways positive. In contrast, the two terms in Eq. (9) can
be of equal magnitude and compete about the sign of
∆S(ω ≈ Ω). The p-sensitive current noise in Eq. (9)
changes sign when the effective temperature of the oscil-
lator is equal to (eV/kB)(1−γ+/2γtot)/(1−γ+/γtot). For
a cold environment Tenv ≪ eV , ∆S(ω) is negative at the
resonance, whereas, for a hot environment Tenv > eV ,
∆S(ω) is positive. This change of sign never appears
during a position measurement, so this pronounced dif-
ference between a x-dependent and a p-dependent signal
can be used distinguish the two. We illustrate the change
of sign in the inset of Fig. 2, where the added current
noise for η = π/2 is plotted for different Tenv[24].
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FIG. 2: (color online) Added current noise (normalized by
2eI0 ≡ 2e3τ 2

0 V/h) of the proposed momentum detector due to
the presence of the oscillator. For all curves, the bias is eV =
50~Ω, γ+ = γtot/4 and γtot = Ω/200. The main panel shows
the total detector output for different values of the tunneling
phase η and for Tenv = 0. The (blue) solid, (black) dotted, and
(red) dashed lines correspond to 2η/π = 1, 1.005, and 1.01,
respectively. In the inset, the current noise at the p-sensitive
phase η = π/2 is plotted for two different temperatures of
the environment Tenv = 0 (solid line) and Tenv = 5eV/kB

(dash-dotted line).

In the main panel of Fig. 2, we plot the full detector out-
put for different values of η near the optimal operation
point for momentum detection. Away from η = π/2, con-
tributions to the current noise ∼ λ2

x become important
and wash out the momentum signal ∼ λ2

p. Indeed, for
small ∆η = η − π/2, the ratio λx/λp ∼ (−∆η)(eV/~Ω)
of the two amplification factors becomes large as soon as
|∆η| > ~Ω/eV . In the high-bias regime (eV ≫ ~Ω), mo-
mentum detection therefore requires good experimental
control over the applied flux. At moderate bias eV ≥ ~Ω,
the requirement on ∆η becomes less restrictive. Finally,
the current noise spectrum at η = π/2 shows a strong

symmetry around Ω that makes the optimal operation
point easily identifiable.

In conclusion, we have shown how a modified tunnel junc-
tion position detector can be designed to detect the mo-
mentum fluctuations of a NEM oscillator. By using two
tunnel junctions in an AB-type setup, it is possible to
precisely tailor the interaction Hamiltonian between the
detector and the oscillator via an external magnetic field.
We have demonstrated how the proposed detector can
be made sensitive to either displacement or momentum
fluctuations of the oscillator.
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