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Abstract. We consider a quasi one-dimensional configuration consisting of two small pieces of
ferromagnetic material separated by a metallic one and contacted by two metallic leads. A spin-
polarized current is injected from one lead. Our goal is to investigate the correlation induced between
the magnetizations of the two ferromagnets by spin-transfer torque. This torque results from the
interaction between the magnetizations and the spin polarization of the current. We discuss the
dynamics of a single ferromagnet, the extension to the case of two ferromagnets, and give some estimates
for the parameters based on experiments.

1. Introduction

As proposed by Slonczewski [1] and Berger [2], a spin-polarized current flowing through a ferromagnetic
layer exerts a torque on its magnetization. This torque, know as spin-transfer torque, can move
the magnetization if the ferromagnet is small enough, as demonstrated in experiments [3, 4]. This
mechanism allows for current-driven manipulation of the magnetization as an alternative to the
manipulation with a magnetic field. Triggered by the quasi-classical model with spin-dependent
potentials first presented in [1], efforts have be made to refine the theoretical description of this
mechanism [5, 6]. The resulting magnetization dynamics has been investigated e.g. in [1, 6, 7, 8].
In the present work, we evaluate the spin-transfer torque within a scattering approach, considering a
single conducting channel in the ballistic regime. Interestingly, this approach yields an expression more
general than the quasi-classical model used in [1] or the Landauer-Büttiker-like formalism developed
in [5], but similar to the results obtained within magnetoelectronic circuit theory [9] or a diffusive
transport analysis [8]. We also discuss the application of this approach to investigate the correlated
dynamics of the magnetizations in a multilayer structure with two ferromagnetic layers.

2. Spin-transfer torque in a single ferromagnet

We consider a small piece of ferromagnet contacted by two metallic leads such as in figure 1. We
are interested in the dynamics of the magnetization ~S of the ferromagnet caused by the flow of
spin-polarized currents through the structure. By conservation of angular momentum, the change
rate of the magnetization is given by the net spin flux transfered to the ferromagnet, d~S/dt = ~Fnet.
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Figure 1. Building block for a magnetic multilayer
nanopillar: a small piece of ferromagnet between two normal
metal areas. Currents with spin polarizations along ~mL,R

are injected from both sides (amplitudes aL,R) and are partly
transmitted to the other side, partly reflected to the same
side (amplitudes bL,R). The ferromagnetic layer of width w

centered at position x0 carries a magnetization ~S.
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Figure 2. Band structure in (a) the normal metal areas and (b) the ferromagnet, and corresponding
wave vectors at the Fermi level. We assume that a single channel with parabolic dispersion crosses
the Fermi level. In the ferromagnet, the dispersions for the two spin polarizations with respect to the
magnetization are shifted by the exchange energy EX. We also allow for an overall shift E′

⊥ − E⊥ of
the band bottom with respect to the normal metal area.

The net spin flux is given by the difference of the rightward spin current densities at both sides of the
ferromagnet, ~Fnet = ~QL− ~QR. This flux results from the change of spin polarization of the transmitted,
reflected, and incoming currents caused by spin filtering at the metal-ferromagnet interfaces. This
quantity is also called spin-transfer torque and reflects the reaction of the spin-polarized currents on
the magnetization.

For simplicity, we consider a single conducting channel below the Fermi level [see figure 2(a)]. We
model the propagation of the electrons along the structure by plane waves. The wave functions in the
left and right metallic areas are thus given by

ΨL(x) = χaLeikinx + χbLe−ikinx,

ΨR(x) = χaRe−ikinx + χbReikinx,
(1)

where x is the coordinate along the structure and kin the Fermi wave vector. The spinor χ of each
wave gives the amplitudes of its two spin components. The corresponding spin current densities read

~QL =
h̄

2
vin

[

χ†
aL~̂σχaL − χ†

bL~̂σχbL

]

,

~QR =
h̄

2
vin

[

χ†
bR~̂σχbR − χ†

aR~̂σχaR

]

,

(2)

where vin denotes the Fermi velocity and ~̂σ the vector of Pauli matrices. The spinors of the outgoing
waves (denoted by an index a) are related to the spinors of the ingoing ones (index b) through the
4 × 4 scattering matrix S,

(

χbL

χbR

)

= S

(

χaL

χaR

)

. (3)

Thus, it suffices to solve the scattering problem in order to obtain the net spin flux in terms of the
spin polarization of the incoming currents.

In the ferromagnet, the electrons with spin parallel and anti-parallel to the magnetization have
energies split by the exchange energy EX [see figure 2(b)]. As a consequence, there are two different
wave vectors k± at the Fermi energy EF. Furthermore, the lateral confinement energy defining the
band bottom may be different in the ferromagnet (E′

⊥) and in the normal metal (E⊥). These two
effects may be captured in a dimensionless exchange splitting ε = EX/(EF −E⊥) and a dimensionless
band shift ∆ = (E′

⊥ − E⊥)/(EF − E⊥), yielding the wave vectors κ± = k±/kin =
√

1 − ∆ ± ε/2 with
respect to the Fermi wave vector kin in the normal metal.

Solving the matching equations for the wave function and its derivative at both interfaces, one
obtains the scattering matrix

S =

(

r̂e−ikin(w−2x0) t̂e−ikinw

t̂e−ikinw r̂e−ikin(w+2x0)

)

(4)



for a ferromagnet of width w centered at position x0. It involves the transmission and reflection
matrices t̂ = (1̂+~n · ~̂σ)t+/2+ (1̂−~n · ~̂σ)t−/2 and r̂ = (1̂+~n · ~̂σ)r+/2+ (1̂−~n · ~̂σ)r−/2, defined in terms

of the unit vector ~n = ~S/S pointing in the direction of the magnetization, and of the transmission
and reflection amplitudes (with the index σ = ±)

tσ =

[

cos (kσw) −
i

2

(

κσ +
1

κσ

)

sin (kσw)

]−1

,

rσ =
i

2

(

κσ −
1

κσ

)

sin (kσw)

[

cos (kσw) −
i

2

(

κσ +
1

κσ

)

sin (kσw)

]−1

.

(5)

Combining these results with (2) and (3), one obtains an expression for the net spin flux transfered
to the ferromagnet

~Fnet =
h̄

2
vin ~n ×

[

−
(

1 − Re
{

t∗+t− + r∗+r−
})

~n × (~mL + ~mR) − Im
{

t∗+t− + r∗+r−
}

(~mL + ~mR)

+ Re
{

t∗+r− + r∗+t−
}

~n × ~mLR − Im
{

t∗+r− + r∗+t−
}

~mLR

]

.
(6)

It involves the vectors ~mL = χ†
aL~̂σχaL and ~mR = χ†

aR~̂σχaR, which point in the direction of the spin
polarization of the currents incoming from the left and right metallic areas [see (2)], as well as the

vector ~mLR = 2Re
{

e−2ikinx0χ†
aL~̂σχaR

}

.

3. Dynamics of a single ferromagnet

We now investigate the magnetization dynamics in a structure with a single ferromagnetic layer such
as in figure 1, with a spin-polarized current incoming from the left (χaL = χin) and none from the

right (χaR = 0). The charge current density is given by jin = evinχ
†
inχin. If the injected current is

perfectly spin-polarized, ~nin = χ†
in~̂σχin/(χ

†
inχin) is a unit vector pointing in the direction of the spin

current density [10]. Rewriting the equation of motion d~S/dt = ~Fnet of the magnetization for the unit

vector ~n = ~S/S and substituting the result (6), one obtains

d~n

dt
= Ω [−Re{c}~n × (~n × ~nin) + Im{c}~n × ~nin] . (7)
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Figure 3.

Real part [(a), (b)] and
imaginary part [(c), (d)] of
c = 1 − t∗+t− − r∗+r− as a
function of the dimension-
less exchange splitting ε and
band shift ∆. It is computed
for a multilayer structure
characterized by kinw = 40.
The graphs (b) and (d) show
a cut of the density plots (a)
and (c) along the line ∆ = 0.
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Figure 4. The dynamics of the magnetization direction ~n(t)
starting from an initial condition θ(0) = 7π/12 and ϕ(0) = 0,
calculated with the parameter c = 0.04 − 0.26i.

The time scale is set by the frequency Ω = (h̄/2S)(jin/e). The properties of the ferromagnetic layer
enter through the real and imaginary part of the coefficient c = 1 − t∗+t− − r∗+r−, which take values

in the intervals 0 ≤ Re{c} ≤ 2 and −1 ≤ Im{c} ≤ 1 [see figure 3]. This coefficient c = g↑↓ − t↑↓ is
the difference of the reflection and transmission mixing conductances [6]. It is interesting to notice
that the second term of the torque on the right-hand side of (7), pointing in the direction of ~n × ~nin,
does not appear in the quasi-classical result obtained in [1] and in the expression derived in [5] upon
ensemble averaging within a Landauer-Büttiker scattering formalism. However, such a term is also
obtained within magnetoelectric circuit theory [9] or by solving diffusive transport equations [8].

The equation of motion (7) clearly conserves the unit length of ~n. It is convenient to use a coordinate
system in which the z-axis points in the direction ~nin of the spin polarization of the incoming current
and to parametrize ~n in spherical coordinates, ~n = (sin θ cos ϕ, sin θ sin ϕ, cos θ). This yields the
equations of motion

dθ/dt = −Ω Re{c} sin θ(t) , (8a)

dϕ/dt = −Ω Im{c} , (8b)

which have the solution

tan [θ(t)/2] = exp (−Re{c}Ωt) tan [θ(0)/2] , (9a)

ϕ(t) = − Im{c}Ωt + ϕ(0) , (9b)

for a given initial condition θ(0), ϕ(0). Thus, in this simple model, the magnetization will align
itself with the direction ~nin of the spin polarization of the incoming current in a characteristic
time (Re{c}Ω)−1, unless it initially points in the unstable anti-aligned direction −~nin. This motion
will be accompanied by a precession at frequency Im{c}Ω around the same direction ~nin. An example
is shown in figure 4.

Here we have investigated the dynamics induced by the spin-transfer torque only. A more complete
analysis would take into account as well the effects of Gilbert damping and of a finite anisotropy field, as
done e.g. in [1, 7, 8]. In this case, one typically finds either a steady precession of the magnetization or
a magnetization reversal above a given current threshold, depending on the direction of the anisotropy
field with respect to ~nin.

Realistic estimates for the parameters involved can be extracted from state-of-the-art experiments.
In [4], a magnetization density µ0MS = 0.81 T has been reported for a 4-nm thick permalloy film,
yielding S = h̄MSV/(gµB) ≈ 106h̄ for a layer of cross-section 130 × 60 nm2. This gives Ω ≈ 3 ns−1

for an injected current jin = 1 mA. The band structure of a 3.5-nm thick permalloy film grown on Ni
has been investigated by angle-resolved photoemission in [11]. From this data we estimate ε ≈ 0.3,
assuming ∆ = 0 and taking kin ≈ 10 nm−1 in Cu. This yields c = 0.04 − 0.26i for w = 4 nm.

4. Correlated dynamics of two ferromagnets

The formalism presented in section 2 can be applied to investigate the magnetization dynamics induced
by the flow of a spin-polarized current in a system with two ferromagnetic layers such as the one
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Figure 5. A pillar with two ferromagnetic lay-
ers. A current with spin polarization along ~nin

is injected from the left. The component which
is transmitted to the central metallic region can
be reflected back and forth and induce correla-
tions of the magnetizations ~S1 and ~S2 of the
two ferromagnets.

depicted in figure 5. One component of the injected current is reflected by the first ferromagnet and
another one is transmitted in the central region. There, it can be reflected back and forth before being
transmitted to either side. Thus, the net spin fluxes through the two ferromagnets are correlated. As
a consequence, the dynamics of the two magnetizations will also be correlated.

This effect can be investigated by solving the coupled equations of motion

d~n1/dt = F
(1)
net , (10a)

d~n2/dt = F
(2)
net . (10b)

The net spin flux through the first ferromagnet ~F
(1)
net is given by substituting the magnetization ~n1, the

transmission and reflection amplitudes t
(1)
± and r

(1)
± , and the incoming current amplitudes χaL = χin

and χaR = χc− in expression (6). Similarly, the flux ~F
(2)
net is given in terms of ~n2, t

(2)
± , and r

(2)
± , with

the substitutions χaL = χc+ and χaR = 0 (see figure 5). Here again, by solving the scattering problem
one can express the spinors in the central region in terms of the spinor of the incoming current,

χc+ = e−ikinw1

[

1̂ − e2ikinwN r̂1r̂2

]−1
t̂1χin , (11a)

χc− = eikin[wN−(w1+w2)/2]r̂2

[

1̂ − e2ikinwN r̂1r̂2

]−1
t̂1χin . (11b)

The transmission and reflection amplitudes of each ferromagnetic layer depend on the magnetization
direction. This is the origin of the coupling between the equations of motion (10a) and (10b). The
problem becomes easier when the first ferromagnetic layer is much thicker than the second one,
implying S1 ≫ S2. Then, ~n1 can be considered as fixed while solving the equation of motion for ~n2.
The solution of these problems is the object of work in progress.

In conclusion, we have evaluated the spin-transfer torque within a scattering approach for a single
channel in the ballistic regime, and discussed the extension of this formalism to investigate correlated
magnetization dynamics in multilayer magnetic nanopillars.
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