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We investigate a superconducting single-electron transistor capacitively coupled to a nanome-
chanical oscillator and focus on the double Josephson quasiparticle resonance. The existence of two
coherent Cooper pair tunneling events is shown to lead to pronounced backaction effects. Measuring
the current and the shot noise provides a direct way of gaining information on the state of the oscil-
lator. In addition to an analytical discussion of the linear-response regime, we discuss and compare
results of higher-order approximation schemes and a fully numerical solution. We find that cooling
of the mechanical resonator is possible, and that there are driven and bistable oscillator states at
low couplings. Finally, we also discuss the frequency dependence of the charge noise and the current
noise of the superconducting single electron transistor.
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I. INTRODUCTION

The cooling of nanomechanical systems by measure-
ment has received a lot of attention recently. Various pro-
cedures like the laser sideband cooling schemes developed
for trapped ions and atoms,1 have been proposed as ways
to significantly cool a nanomechanical resonator (NR)
coupled to a Cooper-pair box,2–5 a flux qubit,6,7 quantum
dots,11, trapped ions,12 and optical cavities.13–34 On the
experimental side, optomechanical cooling schemes have
been shown to be promising:13–20 the NR was cooled to
ultra-low temperatures via either photothermal forces or
radiation pressure by coupling it to a driven cavity.

Another important nanoelectromechanical measure-
ment device which both holds the possibility of very
accurate position measurements35 as well as of cooling
of an NR, is a superconducting single-electron transis-
tor (SSET). Shortly after the theoretical proposals pre-
dicting the potential of the SSET to cool a nanome-
chanical system,8,9,67 this effect has been experimen-
tally observed.10 Using other detectors for NRs such
as normal-state single-electron transistors36 or tunnel
junctions,37,68 it is very difficult to cool the nanomechan-
ical system or drive it into a non-classical state. These
detectors usually act as heat baths with effective tem-
peratures proportional to the transport voltage, which
is in practice higher than the bath temperature. The
SSET system, on the other hand, shows sharp transport
resonances. At those the effective temperature is voltage-
independent and can be made very low.

To achieve such challenging goals as ground-state cool-
ing of NRs,10 or the creation of squeezed oscillator states,
a better understanding of the transport properties of the
coupled SSET-NR system is required. This system is
schematically shown in Fig. 1. Depending on external pa-
rameters such as the gate voltage VG, the bias voltage V ,
and also the superconducting gap ∆, the SSET supports

different types of resonance conditions. The two most
prominent ones are the so-called Josephson quasiparticle
(JQP) and the double Josephson quasiparticle (DJQP)
cycle.38,39 Whereas the former involves the coherent tun-
neling of a Cooper pair at one of the two junctions fol-
lowed by a successive tunneling of two quasi-particles at
the other junction, the latter consists of four steps (illus-
trated in Fig. 2 below) that involve a Cooper pair tunnel-
ing at each of the junctions and a quasi-particle tunnel-
ing at each of the junctions. The transport properties of
the SSET coupled to an NR close to the JQP resonance
have been analyzed in a recent theoretical work.40 Here,
we focus on the analysis of the same coupled quantum
system at the DJQP resonance. Since the JQP is a one-
dimensional resonance in the parameter space spanned by
VG and V and the DJQP is a zero-dimensional resonance
in the same parameter space, all action and backaction
effects close to the DJQP resonance are much more pro-
nounced than close to the JQP resonance. This is of
crucial importance if one wants to manipulate the state
of the NR by measurement of the SSET detector be-
cause, in experiments, the typical coupling between the
two quantum systems turns out to be rather weak.

We analyze how the NR can be cooled below the tem-
perature of the external heat bath and how it can be
brought into a (non-thermal) driven state at the DJQP
resonance. Under certain conditions, we find signatures
of bistable solutions of the coupled quantum system of
NR and SSET. It is of particular interest and experi-
mental relevance, to know how a successful cooling of the
NR or the preparation of a driven state can be observed
in transport properties of the SSET such as its current
or current noise. We show that there is a one-to-one
correspondence between interesting state preparations of
the NR and the transport properties of the SSET. This
provides a powerful and feasible tool to initialize and ma-
nipulate NR quantum states by measurement.

The article is organized as follows. In section II,
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FIG. 1: Schematic setup of the SSET-resonator system: Two
superconducting leads at voltages VL and VR are coupled by
tunnel junctions to a superconducting island. Its chemical po-
tential can be tuned by a gate voltage VG. A nearby nanome-
chanical oscillator acts as an x-dependent gate.

we present the model for the coupled quantum system
of NR and SSET, discuss the different approximation
schemes of the analytical solutions as well as the cal-
culation scheme behind the exact numerical solution of
the underlying master equation. Then, in section III, we
analyze the oscillator properties by means of the differ-
ent methods, identifying interesting quantum states of
the NR due to its coupling to the SSET. Subsequently,
in section IV, we discuss the current of the SSET de-
tector and, in section V, the charge and current noise.
It turns out that the combination of the two transport
properties is sufficient to clearly identify a successful cool-
ing or driven-state preparation of the oscillator. Finally,
we present our conclusions in section VI. Details of the
calculations are contained in the Appendices.

II. MODEL

The system under investigation consists of a supercon-
ducting single-electron transistor (SSET) which is capac-
itively coupled to a nanomechanical resonator (NR) as
shown schematically in Fig. 1. The total Hamiltonian of
the system reads

H = HL + HR + HI + HT + HC + HN + HN,I . (1)

The first three terms HL,R,I are standard BCS Hamil-
tonians and describe two superconducting leads (left and
right) and a superconducting island,

Hα =
∑

k,σ

ǫαkσc†αkσcαkσ . (2)

Here, cαkσ are annihilation operators for quasiparticles of
momentum k and spin σ in the system α (α = L, R, I).
The dispersion relation ǫαkσ accounts for the supercon-
ducting gap of width 2∆ which we assume to be equal
for the three systems. The chemical potentials in the left
and right leads are determined by the applied bias volt-
age V = VL−VR, while the island chemical potential can
be tuned by applying a gate voltage VG (see Fig. 1).

The left and right leads are connected to the central
island by quasiparticle tunneling and Cooper pair tun-
neling. Denoting by φα the superconducting phase dif-
ference at the junction α = L, R, we use the following
quasiparticle tunneling term

HT,qp =
∑

α=L,R

e−iφα/2
∑

k,q,σ

Tkqc
†
αkσcIqσ + h. c. , (3)

where Tkq are the tunneling amplitudes which can be
used to calculate41 the quasiparticle tunneling rates ΓL,R.
Cooper pair tunneling is accounted for by the term

HT,CP = −
∑

α=L,R

Jα cosφα , (4)

where Jα are the Josephson energies of the two junctions.
Hence, the total tunneling Hamiltonian is given by HT =
HT,qp + HT,CP .

The final ingredient for the SSET Hamiltonian is the
Coulomb energy of the island. If we denote by nL and
nR the number of electrons that have tunneled from the
island to the left and right lead, respectively, then n =
−nL−nR is the excess number of electrons on the island.
The charging term can be written as

HC = EC(n + n0)
2 + eV nR , (5)

where EC is the charging energy and n0 can be controlled
by the gate voltage (see Appendix A). In terms of the
capacitances of the two junctions CL,R, the gate CG and
the resonator CN , the charging energy is given by EC =
e2/(2CΣ), where CΣ = CL + CR + CG + CN is the total
capacitance.

Next, we focus on the coupling of the SSET to the
NR. The latter can be regarded as a harmonic oscillator
of frequency Ω and mass M and is therefore described by
the Hamiltonian

HN = ~Ω
(

nosc + 1
2

)

=
p2

2M
+ 1

2MΩ2x2 . (6)

The NR is held on a constant voltage VN and hence acts
on the SSET as an additional gate with an x-dependent
capacitance CN (x). Therefore, the presence of the NR
modifies the charging term HC . Expanding the contri-
bution for small displacements x and retaining only the
lowest order, one finds that the coupling between SSET
and NR is given by

HN,I = −An x , (7)

where the coupling constant A depends in a non-trivial
way on the voltages and capacitances of the system
and can be regarded as an effective parameter (see Ap-
pendix A). Note that this expansion is only valid for dis-
placements x which are small compared to the distance d
between the SSET and the NR, i.e. x/d ≪ 1. Upon con-
tinuing the expansion, one encounters terms proportional
to n2 and to x2 which will be neglected here.
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FIG. 2: Illustration of the DJQP cycle: (i) Cooper pair
tunneling through the left junction, (ii) quasiparticle tunnel-
ing through the right junction, (iii) Cooper pair tunneling
through the right junction and (iv) quasiparticle tunneling
through the left junction.

Due to the complex structure of the full Hamilto-
nian (1) one should not hope for an exact solution in
all regimes. Instead, we will make several assumptions
which will enable us to investigate the transport proper-
ties of this system at a particular point in the parameter
space.

First, we will briefly review the transport properties of
the bare SSET without coupling to the NR. While the
capacitances, Josephson energies and quasiparticle tun-
neling rates are essentially determined by the experimen-
tal setup, the most important tunable parameters are the
bias voltage V and the gate voltage VG. The transport
properties of the SSET are then determined by how these
voltages are related to the superconducting gap 2∆ and
the charging energy EC .

For high bias voltages eV > 4∆, the difference in chem-
ical potentials allows quasiparticles on both junctions to
overcome the superconducting gap and a quasiparticle
current can flow. But even for lower bias voltages, one
observes a finite current at certain values of the gate volt-
age. A possible mechanism is the Josephson-quasiparticle
(JQP) resonance which is a cyclic process that starts with
the tunneling of a Cooper pair on one of the junctions fol-
lowed by two subsequent quasiparticle tunneling events
on the other junction.38,42 This process is possible above
a lower bias voltage threshold, eV > 2∆ + EC .

For even lower bias voltages, isolated current reso-
nances can be observed which are due to the onset of
the double Josephson quasiparticle (DJQP) resonance.
A schematic picture of this process is shown in Fig. 2. It
starts with a Cooper pair tunneling across, say, the left
junction. Next, a quasiparticle tunnels out through the
right junction, followed by a Cooper pair. Finally, after a
quasiparticle tunnels through the left junction, the initial
system state is reached again.

This process is energetically allowed only in a restricted
parameter regime: Cooper pair tunneling is only possi-
ble if the chemical potentials of the lead and the island
(taking into account the Coulomb energy) are on reso-
nance while quasiparticle tunneling requires a difference

in chemical potentials sufficient to overcome the super-
conducting gap. For the DJQP process, it is easy to show
that the resonances occur at bias voltages eV = 2EC and
half-integer island charges n0.

The parameter regime which we investigate is there-
fore characterized by a charging energy EC , a supercon-
ducting gap 2∆ and a bias voltage V which are of the
same order of magnitude. Roughly speaking, these en-
ergy scales are very large compared to the quasiparticle
tunneling rates ΓL,R, the Josephson energies JL,R and
the oscillator energy Ω.

A. Derivation of a Liouville equation

Due to the small tunneling rates, only sequential tun-
neling will contribute to the transport whereas higher-
order (cotunneling) processes are suppressed. This sug-
gests describing the system by a master equation in the
Born-Markov approximation.

For this purpose, we treat the BCS Hamiltonians
HL + HR + HI as a fermionic bath for the remaining
system. Then, system and bath are only coupled by
the quasiparticle Hamiltonian HT,qp. Using the Born
approximation corresponds to disregarding cotunneling
processes while the Markov approximation is valid as long
as there is a separation of time scales between the system
and the bath degrees of freedom. Introducing the system
and bath Hamiltonians

HS = HC + HT,CP + HN + HN,I , (8)

HB = HL + HR + HI , (9)

and using the Born-Markov approximation leads to the
following master equation for the reduced density matrix
ρ(t) of the system,

ρ̇(t) = Lρ(t) (10)

= −
i

~
[HS , ρ(t)]

−
1

~2

∫ ∞

0

dτ TrB [HT,qp, [HT,qp(−τ), ρ(t) ⊗ ρB]] ,

where ρB is the bath density matrix. The time depen-
dence of the HT,qp operator is governed by the Hamil-
tonian HS + HB. The density matrix ρ contains infor-
mation only about the charge and the oscillator degrees
of freedom and can, for example, be written in the ba-
sis |n, nR, x〉 of island charge states |n〉, the amount of
charge |nR〉 which has tunneled through the right junc-
tion, and the oscillator coordinate |x〉. This approach
allows the calculation of the transport properties of the
system via charge counting.43,44 In order to investigate
the transport at the DJQP resonance, it is sufficient to
consider a finite number of basis states for the island
charge n. As a single DJQP cycle involves four charge
states, we can restrict the basis to the states |−1〉, |0〉,
|1〉, and |2〉 which significantly reduces the complexity of
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the problem, since it is thus sufficient to study a reduced
density matrix as described in section II C. This choice
of charge states corresponds to n0 = −1/2.

As long as one is only interested in oscillator properties
or the current through the SSET, the |nR〉 states can be
traced out, and an effective master equation acting on
the Hilbert space of island charge and oscillator posi-
tion, spanned by the states |n, x〉, can be obtained. On
the other hand, for the calculation of the current noise,
the |nR〉 degree of freedom has to be taken into account
explicitly, as will be explained later on. For now, we
proceed with the nR-independent case.

As in the case of the JQP,40 the Liouvillian obtained
from Eq. (10) can be written as a sum of three contribu-
tions

L = LHS
+ Lqp + LCL , (11)

where LHS
governs the coherent evolution of the system,

Lqp is a dissipative term due to quasiparticle tunneling
and LCL is a Caldeira-Leggett type contribution intro-
duced to model the coupling of the harmonic oscillator
to a finite-temperature environment. Explicitly,

LHS
ρ = −

i

~
[HS , ρ] , (12)

Lqpρ = ΓLp̂−1,0ρp̂†−1,0 −
1

2
ΓL {p̂−1,−1, ρ} (13)

+ ΓRp̂2,1ρp̂†2,1 −
1

2
ΓR {p̂2,2, ρ} ,

LCLρ = −
D

~2
[x, [x, ρ]] −

iγextM

2~
[x, {v, ρ}] , (14)

where p̂kj = |j〉 〈k| acts on the charge states of the island
and is utilized here to describe the quasiparticle tunneling
event that changes the charge state from |k〉 to |j〉. The
energy dependence of the quasiparticle tunneling rates
ΓL and ΓR is weak and will therefore be neglected in
the following. The diffusion constant D and external
damping rate γext are related via a fluctuation-dissipation
relation

D = Mγext
~Ω

2
coth

(

~Ω

2kBTB

)

= Mγext ~Ω

(

〈nosc〉 +
1

2

)

. (15)

For ~Ω ≪ kBTB, the diffusion constant can be approxi-
mated by D = MγextkBTB.

In the general case, it is neither possible to calculate ex-
actly the steady-state properties nor the transport prop-
erties of the coupled system using the Liouville super-
operator (11). Thus, approximation schemes must be
employed. In the following two subsections, we describe
in detail the two complementary approximation schemes
we use to study the coupled SSET-oscillator system.

B. Mean-field approach

Physical quantities can be calculated by evaluating the
matrix elements of the density matrix ρ(t). It turns out
that oscillator properties and the average current can be
written in terms of expectation values of the form

〈xnvmp̂kj〉 = Trosc
∑

nR

〈k, nR|x
nvmρ(t) |j, nR + k − j〉 ,

(16)
where x and v are the position and velocity operators of
the oscillator and p̂kj = |j〉 〈k|. The trace over the oscil-
lator degrees of freedom Trosc will be used in the position
basis Trosc(·) =

∫

dx 〈x|·|x〉 as well as in the phonon num-
ber basis where Trosc(·) =

∑∞
nosc=0 〈nosc| · |nosc〉. For the

uncoupled SSET tuned closely to the DJQP resonance,
the average current can be calculated straightforwardly,
as taking the matrix elements of the master equation (10)
leads to a closed set of equations.43 If the NR is included,
however, the coupling terms will lead to equations in-
volving matrix elements of the form 〈xp̂kj〉. Calculating
their time evolution leads to ever higher-order terms of
the form 〈xnvmp̂kj〉, so that the set of differential equa-
tions never closes. Hence, a truncation scheme is needed.
A standard route is to truncate the system of equations
by assuming a vanishing nth-order cumulant 〈〈xnp̂kj〉〉.
This allows one to rewrite nth-order expectation values
in terms of expectation values of order n − 1 and hence
to arrive at a closed, albeit non-linear, set of equations.

We use and compare these approximations for n =
1 (which we call thermal-oscillator approximation) and
n = 2 (Gaussian approximation). These two levels of
approximation are related to what was called ‘mean 1’
and ‘mean 2’ in Ref. [40]. In order to give an estimate
of the physical quality of the truncation scheme, we also
compare our results to exact numerical calculations.

Whereas the expectation values of the form (16) are
sufficient for the calculation of the oscillator properties
and the SSET current, the calculation of the noise re-
quires a slightly extended approach. In order to keep
track of the transfered charge, one has to investigate the
dynamics of nR-resolved expectation values. It turns out
(see Appendix E) that the noise can be rewritten in terms
of expectation values of the operators

p̂
n′

RnR

kj = |j〉 〈k| ⊗ |nR〉 〈n
′
R| . (17)

Note that only elements which conserve the number of
charges, j + nR = k + n′

R, are finite. An analogous
truncation scheme can be applied to expectation val-
ues containing these operators. Similar approaches have
been used extensively to describe nanoelectromechanical
systems.8,40,44–48

C. Numerical solution of the Liouville equation

To complement the analytical mean-field approach de-
scribed in the last subsection, we also use a numerical
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approach to study the properties of the NR coupled to
an SSET near the DJQP resonance. First, we present
the approach taken for the calculation of the current and
the oscillator properties, where the nR degree of freedom
plays no role. Subsequently, we will demonstrate how to
extend this approach for the noise calculation, where nR

has to be taken into account.
To calculate the current and the oscillator properties,

we write the density matrix in the |n, nosc〉 basis, with
nosc being the phonon quantum number of the oscilla-
tor and n the charge of the SSET. The spectrum of the
harmonic oscillator is naturally not finite, so we need
to truncate it and consider only its Nmax lowest energy
eigenstates. To describe the DJQP cycle, the reduced
density matrix ρ is of dimension (4Nmax × 4Nmax).

The Liouville superoperator L is a two-sided operator,
in the sense that it acts both from the left and the right
of the density matrix [cf. Eq. (12)]. It can be transformed
to a single-sided operator using a property of the matrix
vectorization operation: the vectorized form of a product
of three (4Nmax×4Nmax) matrices A,B,C can be written
as a single product of an (16N2

max×16N2
max) matrix with

an (16N2
max × 1) vector via the relation vec(ABC) =

(CT ⊗ A)vec(B), where the superscript T denotes the
matrix transposition and ⊗ a Kronecker product.69 The
matrix representation of the Liouville superoperator is
therefore of order (16N2

max × 16N2
max).

To illustrate how the aforementioned vector identity
can be used, we apply it to the coherent evolution con-
tribution to the Liouville equation [Eq. (12)]. In this
case, we find

LHS
ρ = −

i

~
[HS , ρ],

→ vec(LHS
ρ) = −

i

~

(

I⊗ HS + HT
S ⊗ I

)

vec(ρ), (18)

where the matrix representation of the identity matrix I

and of the system Hamiltonian HS is of order (4Nmax ×
4Nmax).

To find the vectorized form of the stationary density
matrix ρstat, defined from Lρstat = 0, we calculate the
null-space of the Liouville matrix. Using the normaliza-
tion condition Tr[ρstat] = 1, the stationary density ma-
trix ρstat can be determined uniquely. The bad scaling
O(N4

max) of the Liouvillian size with the truncation point
in the oscillator spectrum makes the numerical eigenvalue
problem very challenging. Luckily, in this problem the Li-
ouville matrix displays a high sparsity degree, and sparse
eigensolvers can be used. Our implementation uses the
shift-invert mode of the ARPACK49 eigensolver in com-
bination with the PARDISO50,51 linear solver to com-
pute the first few (∼ 5) eigenvalues of L with the lowest
magnitude (λ0) as well as the associated eigenvectors.
The calculated magnitude of the smallest eigenvalue can
be used to verify the validity of the truncation scheme:
when enough Fock states are kept we find |λ0| < 10−15

which is below the desired precision limit of 10−10.
To improve the speed of the calculation and, more

importantly, to increase numerical accuracy, we do not
need to explicitly solve for those matrix elements of ρstat

which, due to the considered Hamiltonian, have to be
zero. For example, coherence can only be created be-
tween two charge states |k〉 and |j〉 if |k − j| = 2,
since only these pairs of states are coupled by Joseph-
son tunneling. Therefore, all density-matrix elements
〈k| ρ |j〉 where |k − j| is odd are zero. Using this ar-
gument, the size of the Liouville matrix can be reduced
to (8N2

max × 8N2
max).

The use of sparse solvers also minimizes the required
memory for the calculation of the eigenvalues, allowing
problems of relatively large size (Nmax . 150) to be
solved on a desktop computer. Also, we note that, con-
trary to what was discussed in Ref. [52], no manual pre-
conditioning was needed to achieve high numerical accu-
racy. To allow for the numerical approach to be used in
the driving regime, where we expect the average energy
of the oscillator to be relatively high, we had to make a
supplementary approximation. In this case, we assumed
that coherence could develop only between states of the
oscillator that are not too far away in energy from each
other, setting 〈nosc|ρ|n

′
osc〉 = 0 for |nosc − n′

osc| & 60.
This allowed for Nmax to be set as high as 750 on a stan-
dard workstation. Moreover, in the cases where it was
possible to compare directly the results of the calcula-
tion with and without this last approximation, we found
that they were identical (within our numerical accuracy).

While this approach is viable for the calculation of the
oscillator properties and the current, it fails to keep track
of the tunneled charge nR and thus cannot be used to
calculate the current noise. A straightforward inclusion
of the |nR〉 states is numerically impossible as the cor-
responding Hilbert space is of infinite dimension. How-
ever, this problem can be circumvented by considering
the nR-resolved density matrices ρ(nR) (nR ∈ Z), which
are submatrices of the complete density matrix ρ, whose
entries are defined by

〈k| ρ(nR) |j〉 = 〈k, n′
R| ρ |j, nR〉 , (19)

where the relation between nR and n′
R is given by charge

conservation. At the DJQP resonance, we have n′
R =

nR − 2 for (k, j) = (1,−1), n′
R = nR + 2 for (k, j) =

(−1, 1) are n′
R = nR otherwise.43 Note that we did not

write out the oscillator degree of freedom explicitly in this
matrix. Calculating the time evolution of these matrix
elements according to Eq. (10), one finds

d

dt
ρ(nR) =

[

L − Iqp − I+
CP − I−

CP

]

ρ(nR) (20)

+ Iqpρ
(nR−1) + I+

CP ρ(nR+2) + I−
CP ρ(nR−2) .

As expected, the tunneling leads to a coupling between
density matrices of different nR. It is produced by the
current superoperators describing the quasiparticle and
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the Cooper pair tunneling, which are defined as

Iqpρ = ΓR |1〉 〈2| ρ |2〉 〈1| , (21)

I+
CP ρ = −

iJR

2~
[|1〉 〈−1| ρ |−1〉 〈−1| + |1〉 〈−1| ρ |1〉 〈1|] ,

I−
CP ρ = −

iJR

2~
[|−1〉 〈1| ρ |−1〉 〈−1| + |−1〉 〈1| ρ |1〉 〈1|] .

It is important to realize that by writing the Liouville
equation in terms of nR-resolved density matrices and
current superoperators, we have achieved a description
of the system in terms of only the |n, nosc〉 states again.
This, however, comes at the price of having to deal with
an infinite number of density matrices, ρ(nR). Still, fol-
lowing the approach of Ref. [53] it will turn out that
convenient expressions for the current and the noise can
be formulated in terms of these current superoperators.

III. OSCILLATOR PROPERTIES

As mentioned before we treat the NR as a harmonic
oscillator and we use the master equation to investigate
the time evolution of the mean displacement

〈x〉 = TrnR
Trn Trosc [ρ(t)x] , (22)

and of the velocity v, correspondingly. Here, Trn(·) =
∑2

n=−1 〈n| · |n〉 denotes the trace over the island charge,

while TrnR
(·) =

∑∞
nR=−∞ 〈nR| · |nR〉 traces over the tun-

neled charge. Likewise, the master equation will allow us
to calculate expectation values of higher order like 〈x2〉
and 〈v2〉 which are required for the calculation of the
oscillator energy.

For a linear coupling of the NR to the SSET as in
Eq. (7), we find the following equations describing the
time evolution of the oscillator coupled to the SSET

d

dt
〈x〉 = 〈v〉 , (23)

d

dt
〈v〉 = −Ω2 〈x〉 − γext 〈v〉 +

A

M
〈n〉 , (24)

where 〈n〉 =
∑

k k 〈p̂kk〉 is the expectation value of the is-
land occupation and γext accounts for the external damp-
ing. The stationary limit, where d

dt 〈v〉 = d
dt 〈x〉 = 0, can

be regarded as the long-time limit when the oscillatory
behavior has been damped by the thermal bath and thus
〈v〉 = 0 and 〈x〉 = (A/MΩ2)〈n〉. If the coupling A to
the SSET is zero, the oscillator stays in its equilibrium
position at 〈x〉 = 0. For finite coupling, due to the elec-
tromagnetic repulsion the NR equilibrates in a position
〈x〉 6= 0 proportional to the coupling and the charge 〈n〉
on the island. Note that the influence of the SSET on the
NR is of the first order in the coupling A. This regime has
already been studied in some detail8,9 and it was shown
that the SSET acts as an effective thermal bath for the
NR. As we will illustrate further on, the signature of the
NR in the transport properties of the SSET is of second

order in the coupling and is clearly visible in the current
and the noise properties of the SSET.

To study the influence of the NR on the SSET we in-
troduce dimensionless quantities which are normalized to
motional quanta of the oscillator. Using the frequency Ω
and the harmonic oscillator length,

x0 =

√

~

2MΩ
, (25)

as units we define x̃ = x/x0, t̃ = Ωt and ṽ = v/Ωx0,
i.e. we normalize all variables with respect to “oscillator”
quantities. This allows an easier comparison with the
experiment where, for example, the bias voltage can be
varied at constant coupling. Consequently, the equations
of motion can be rewritten as

d

dt̃
〈x̃〉 = 〈ṽ〉 , (26)

d

dt̃
〈ṽ〉 = −〈x̃〉 − γ̃ext 〈ṽ〉 + 2Ã 〈n〉 . (27)

where γ̃ext = γext/Ω and Ã = x0A/~Ω.
Not only is the equilibrium position of the resonator

shifted by the coupling to the SSET, but also the cumu-
lants of the position and velocity of the NR, i.e. 〈〈x2〉〉 =
〈x2〉 − 〈x〉2, are influenced by this coupling:

d

dt̃
〈〈x̃2〉〉 = 〈〈{x̃, ṽ}+〉〉 , (28)

d

dt̃
〈〈{x̃, ṽ}+〉〉 = 2〈〈ṽ2〉〉 − 2〈〈x̃2〉〉 − γ̃ext〈〈{x̃, ṽ}+〉〉

+ 4Ã (〈n x̃〉 − 〈n〉 〈x̃〉) , (29)

d

dt̃
〈〈ṽ2〉〉 = −〈〈{x̃, ṽ}+〉〉 − 2γ̃ext〈〈ṽ

2〉〉 + 4γ̃extT̃B

+ 4Ã (〈n ṽ〉 − 〈n〉 〈ṽ〉) , (30)

where T̃B = kBTB/~Ω and {·, ·}+ denotes the anti-
commutator. In the stationary limit this leads to

〈〈{x̃, ṽ}+〉〉 = 0 , (31)

〈〈ṽ2〉〉 = 2T̃B + 2Ã (〈n ṽ〉 − 〈n〉 〈ṽ〉) /γ̃ext , (32)

〈〈x̃2〉〉 = 〈〈ṽ2〉〉 + 2Ã (〈n x̃〉 − 〈n〉 〈x̃〉) . (33)

To lowest (linear) order, which we refer to as the
thermal-oscillator approximation, we assume that 〈nv〉 =
〈n〉〈v〉. This is identical to assuming that the correla-
tions between n and v vanish, i.e. 〈〈n v〉〉 = 0. Con-
sequently, the fluctuations of the harmonic oscillator
are not influenced by the SSET such that the virial
theorem 〈〈ṽ2〉〉 = 〈〈x̃2〉〉 and the equipartition theorem

〈〈ṽ2〉〉 = 2 T̃B are fulfilled in the high-temperature limit

T̃B ≫ 1. The resonator is thus in a thermal state de-
termined only by T̃B and γ̃ext. In the thermal-oscillator
approximation analytic expressions for the current and
noise in the SSET can be derived and will be discussed
in the upcoming sections.
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The thermal-oscillator approximation is justified for
weak coupling between the SSET and the NR, but fails
for stronger coupling, since the observables of the oscilla-
tor become entangled with the charge state of the SSET.
As was already observed before,8,9 an increased coupling
can drive the oscillator to a non-thermal state character-
ized by a finite 〈nv〉 − 〈n〉〈v〉 6= 0, where the virial and
equipartition theorems no longer hold.

In order to investigate this regime, we have to go to
the next order in our approximation which means taking
the fluctuations of 〈〈nx〉〉 into account, but assuming all
higher-order cumulants to vanish, e.g. 〈〈nx2〉〉 = 0. This
will be referred to as the Gaussian approximation since
for a Gaussian distribution all cumulants 〈〈xn〉〉 for n >
2 are zero and the resonator is fully described by the
two lowest moments. Under this assumption, we can
express expectation values of the form 〈x2p̂kj〉 as products

of the lower-order expectation values 〈xp̂kj〉, 〈x2〉, 〈x〉
and 〈p̂kj〉. While this approach leads to a closed set of
differential equations, the set will now be non-linear and
has to be solved numerically.

In principle, this approximation scheme can be contin-
ued to even higher orders.40 However, since the Gaussian
approximation works well for the low-coupling regime we
are interested in, we do not go beyond it. Ultimately, for
even stronger coupling, the linear coupling between the
SSET and the NR itself becomes questionable.

In order to investigate the oscillator state in more de-
tail, we study the energy E = 1

2MΩ2x2 + 1
2Mv2, in di-

mensionless quantities
〈

E

~Ω

〉

=
1

4

(〈

x̃2
〉

+
〈

ṽ2
〉)

= 〈nosc〉 +
1

2
. (34)

Previous work9,46 has focused on the fluctuations of the
number of charges on the island, n, which in linear re-
sponse can be described by an effective damping and ef-
fective temperature. We will discuss this approach in
more detail in the context of the charge noise. For an
identification of the oscillator state, though, we choose a
different route and investigate the energy of the NR. In
the stationary limit, using Eqs. (32) and (33), we find for
the energy

〈

E

~Ω

〉

= T̃B + Ã
2〈〈nṽ〉〉 + γ̃ext〈〈nx̃〉〉

2γ̃ext
+

1

4
〈x̃〉

2
. (35)

A finite 〈x〉 6= 0 provides additional potential energy, but

the contribution is small, since 〈x̃〉2 = 4Ã2〈n〉2. There-
fore, it is the correlations of the entangled SSET-NR sys-
tem contained in the second term, which have the poten-
tial to drive the system out of a thermal state.

The results for a calculation of the energy in the Gaus-
sian approximation for a typical, experimentally relevant
set of parameters are shown in Figs. 3 and 4 where we
display the oscillator energy as a function of gate voltage
VG and the bias voltage V measured away from the reso-
nance position. As the DJQP cycle contains two Cooper
pair tunneling events, there are two resonance conditions
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FIG. 3: Oscillator energy in units of ~Ω in the Gaussian ap-
proximation as a function of the gate voltage eVG/~Ω and the
bias voltage eV/~Ω where (0, 0) denotes the resonance. The

parameters used are Γ̃L = Γ̃R = 10, J̃L = J̃R = 2, γ̃ext =
10−4, T̃B = 2.5 and Ã = 0.02. In the red-detuned area
(V < 0, −V < VG < V ), cooling below the bath tempera-
ture is visible (blue region). Driving can be observed in the
blue-detuned case (V > 0, −V < VG < V ). The highest
energies are obtained in the yellow region.
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FIG. 4: Oscillator energy in the Gaussian approximation in
units of ~Ω for the Gaussian approximation as a function
of the gate voltage eVG/~Ω and the bias voltage eV/~Ω for

increased coupling Ã = 0.03. Cooling and driving effects are
increased as compared to Fig. 3. In the black area two stable
and one unstable solution are found, i.e. the system becomes
bistable. The area grows for stronger coupling.

which have to be met and which can be controlled by
adjusting the bias and gate voltages.

The physical picture can be explained most clearly if
we assume VG = 0, which corresponds to a vertical cut
in Fig. 3. If the system is blue-detuned from a resonance
(V > 0), the tunneling Cooper pairs transfer a part of
their energy to the oscillator in order to be able to tunnel.
This leads to driving of the oscillator. On the contrary,
for a red-detuned resonance (V < 0), the Cooper pairs
can absorb energy from the oscillator, leading to cooling.
A similar result was already found using a linear-response
approach in Ref. [9].

In the regime where both resonances involved in the
DJQP cycle are blue-detuned (V > 0, −V < VG < V ),
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FIG. 5: Distribution P (nosc) of the oscillator phonon
number for different values of the bias voltage eV/~Ω =
{−1, 0, 1, . . . , 7} from left to right along the x-axis. The pa-

rameters used for this plot are Ã = 0.1, Γ̃L = Γ̃R = 12,
J̃L = J̃R = 2.5, γ̃ext = 0.001 and T̃B = 3. For negative V and
small positive V we find an exponential decay corresponding
to a thermal state. For larger V > 0 the distribution develops
a peak at n 6= 0 which indicates a driven state.

we find a particularly strong driving of the oscillator. In
the white regions of Fig. 4, energies of the order 103

~Ω
(depending on the system parameters) are reached even

for rather small coupling of the order Ã ≈ 0.02. The nu-
merical solution of the Liouville equation reveals more-
over that the resulting oscillator state is highly non-
thermal, i.e. the distribution function of oscillator states
P (nosc) strongly deviates from a Boltzmann distribution.

This is calculated in Fig. 5 using the numerical ap-
proach for different values of eV/~Ω. We find an ex-
ponential decay for V ≤ 0 corresponding to the high-
temperature limit of the Boltzmann distribution and a
trend towards a driven state for V > 0.

In the regime where both resonances are red-detuned
(V < 0, −V < VG < V ), we find a cooling of the oscil-
lator to temperatures well below the bath temperature.
This shows up in Figs. 3 and 4 as the little triangular-
shaped regions below the center, where the oscillator en-
ergy drops below the value corresponding to the bath
temperature.

Due to the non-linearity of the master equation, more
than one physical solution may emerge and we find that
this is indeed the case in the sector where the NR is
strongly driven. An analogous effect was found previ-
ously for the same system at the JQP cycle40 and for a
more general class of systems.53–58 We find that gener-
ally, the response of the system close to a DJQP reso-
nance is much more pronounced than at the JQP in the
sense that quantitatively similar effects may be observed
at much smaller values of the coupling. This agrees with
the prediction9 that the backaction effects at the DJQP
exceed those of the JQP by a factor (Γ/J)4. Therefore
the DJQP is favorable from the experimental point of
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0.015
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0.025
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0.035
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Ã

FIG. 6: Oscillator energy in arbitrary units as a function of
bias voltage eV/~Ω and coupling Ã calculated in the Gaussian
approximation. For V < 0, backaction leads to cooling of the
oscillator (blue). On the contrary, strong driving (red/yellow)

can be observed for V > 0. Above a critical coupling Ã(V ),
the system enters a bistable region (black). The parameters
are the same as in Fig. 3 and eVG/~Ω = 0.

view since achieving a strong coupling is challenging.

A plot of the location of the bistabilities found in the
Gaussian approximation as a function of the bias voltage
V and the coupling strength Ã is shown in Fig. 6. Again,
cooling of the oscillator is seen in the blue regions for
V < 0, whereas driving happens for V > 0 as is depicted
by red regions. Towards stronger coupling, both effects
increase in magnitude. Two stable solutions appear only
for a blue-detuned SSET and the voltage range where
such an effect is visible grows with increased coupling.
When increasing the coupling for a given voltage V > 0
(which corresponds to a vertical cut in Fig. 6), the sys-
tem will evolve from a thermal state via the bistable state
to a single driven state. On the contrary, an increase in
voltage (corresponding to a horizontal cut) carries the
system from a thermal state to a driven state, then into
the bistable region. Beyond the bistable region, the sys-
tem will fall back to the thermal state. Note that the
effect of driving is much stronger than the cooling of the
NR (cf. Figs. 3 and 4).

We have confirmed the existence of bistability using
the numerical approach by explicitly calculating the com-
plete probability distribution P (x) [results not shown ex-
plicitly]. In a thermal state, this distribution shows a sin-
gle peak at x = 0. In a driven state, on the contrary, two
symmetric peaks at finite values |x| 6= 0 appear. In the
bistable regime, the system switches between these two
states, leading to a distribution P (x) that shows three
peaks, one (thermal) at the origin and two side-peaks
(driven) at |x| > 0. From these studies of the bistable
regime using the numerical approach, we noticed that
the parameter range in which the system exhibits bista-
bility is smaller than the one obtained via the mean-field
solution. The structure of the bistable region could be
better predicted using the analytical approach by includ-
ing higher than second order cumulants, i.e. extending
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the analysis beyond the Gaussian approximation.
In the following sections, we will show that these dif-

ferent states of the NR also manifest themselves in the
transport properties of the SSET, i.e. the current and the
current noise.

IV. CURRENT PROPERTIES

We showed in the previous section that the coupling
of an SSET to an NR can drive the oscillator into a non-
thermal state and effect in cooling, potentially even cool-
ing down close to the ground state.9,10 In the following,
we will study if and how it is possible to measure signa-
tures of the resonator state in the current and current
noise characteristics of the SSET close to the DJQP res-
onance.

The number of electrons that have left the island to the
right lead, nR, is proportional to the transported charge
and therefore determines the current flow. Hence, the
expectation value of the current is given by

〈I〉 = (−e)
d

dt
〈n̂R〉 = (−e)Tr{ρ̇(t) n̂R} . (36)

Without loss of generality, we chose to measure the cur-
rent across the right junction. In the stationary limit, the
total current is conserved such that the currents across
the left and right junctions are equal. In each DJQP
cycle, two tunneling events take place at the right junc-
tion, see Fig. 2: the transfer of a quasiparticle which
takes the island from charge state |2〉 to the state |1〉.
Subsequently, a Cooper pair tunnels to the right lead
and leaves the island in the state |−1〉. Two processes
involving only changes in nL and n, which therefore do
not contribute to 〈I〉, close the cycle in which 3 electrons
in total have been transported through the island.

Equivalently, in the stationary state the expectation
value of the current 〈I〉 can be written using the super-
operator formalism. From Eq. (20), one finds

〈I〉 = (−e)Trn Trosc (Itotalρstat) (37)

where Itotal = Iqp − 2I+
CP + 2I−

CP is the superoperator
describing the total current. Equation (37) is used in this
form in the numerical routine.

For the analytic mean-field approximations we split the
total current into two terms, 〈I〉 = 〈IND〉 + 〈ID〉, cor-
responding to a contribution from the tunneled Cooper
pair (the non-dissipative current) IND, and a contribu-
tion from the quasiparticle tunneling event (the dissipa-
tive part) ID. For these two contributions we can write
down the exact expressions for the dissipative

〈

ID
〉

= (−e)Trn Trosc (Iqpρstat) , (38a)

= (−e)ΓR 〈p̂22〉 , (38b)

and non-dissipative part
〈

IND
〉

= (−e)Trn Trosc
(

[2I−
CP − 2I+

CP ]ρstat

)

, (39a)

= (−e)2iJR

(

〈p̂1,−1〉 − 〈p̂−1,1〉
)

. (39b)

In the thermal-oscillator approximation, these expec-
tation values can be calculated by solving for the cor-
responding elements of the density matrix, as shown in
detail in the Appendix B. We find that the vector of all
finite 〈p̂kj〉, |p〉, is given by |p〉 = iJ̃LM−1 |c〉 where M is
the evolution matrix of the SSET system containing all
the system parameters, Eq. (B3), and the constant |c〉 is
the inhomogeneous part of the master equation due to
the normalization of the density matrix

∑

k 〈p̂kk〉 = 1.
Using this result the stationary current for the DJQP
cycle can be written as

〈I〉 =
3

2
(−e)Ω

[

1

Γ̃R

+
1

Γ̃L

+
1

γL(x̃)
+

1

γR(x̃)

]−1

. (40)

The inverse of the tunneling rates for quasiparticles and
Cooper pairs, ΓL,R and γL,R, respectively, can be inter-
preted as effective resistances for these processes. Then,
Eq. (40) is reminiscent of the current through a series
of resistors, where the largest resistance determines the
behavior. The Cooper pair tunneling rates are given by38

γL(x̃) = 2Γ̃R
J̃2

L

(Γ̃R/2)2 + ǫ22,0(x̃)
, (41)

γR(x̃) = 2Γ̃L
J̃2

R

(Γ̃L/2)2 + ǫ21,−1(x̃)
. (42)

where ǫk,j denotes the difference in energy between the
charge states |k〉 and |j〉 and thus measures the detun-
ing from the DJQP resonance. The renormalized tun-
neling rates of the SSET are defined by Γ̃α = Γα/Ω and

J̃α = Jα/2~Ω. If the Cooper pair tunneling, say, to the
right lead is resonant, i.e. ǫ1,−1 = 0, the rate γR reaches

a maximum at the value γR = 8J̃2
R/Γ̃L = (2J2

R/ΓL)/Ω.
It decays like a Lorentzian away from the resonance. Ex-
pressions for the current in less general form are for exam-
ple derived for ǫjk = 0 in Ref. [43] and for |ǫ1,−1| = |ǫ2,0|
in Ref. [59].

Due to the capacitive coupling of the SSET to the NR,
the resonance is shifted compared to the uncoupled case
in the thermal approximation. We find in dimensionless
units (derivation given in Appendix B)

ǫ1,−1(x̃) =
eVG

~Ω
+

eV

~Ω
− 2Ã 〈x̃〉 , (43)

ǫ2,0(x̃) =
eVG

~Ω
−

eV

~Ω
− 2Ã 〈x̃〉 . (44)

where eV/~Ω and eVG/~Ω are the relative bias and gate
voltages measured from the values at the DJQP reso-
nance.

The SSET is affected only if the average position of the
NR is finite, i.e. 〈x̃〉 6= 0. This shift in the equilibrium
position of the NR effectively corresponds, from the point
of view of the SSET, to a change in VG and will therefore
be referred to as an effective backgate behavior later on.
This effect is of second order in the coupling A since we
observed in the previous section that 〈x̃〉 is linear in A.
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Ã = 0.0075
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FIG. 7: Difference of the inverse current 1/〈I〉(Ã)−1/〈I〉(Ã =
0) versus bias voltage eV/~Ω for various coupling strengths

Ã. From the intersection with the voltage axis, the shift
2Ã 〈x̃〉 of the oscillator position can be read out. Lines cor-
respond to the numerical analysis and agree well with the
Gaussian approximation (points) in this parameter regime.
Inset: Average current 〈I〉 through the SSET for the param-

eters Γ̃L = Γ̃R = 10, J̃L = J̃R = 2, γ̃ext = 10−4, and T̃B = 3.

Note that the average displacement of the NR oscilla-
tion in the stationary limit,

〈x̃〉 = 2Ã 〈n〉 = 2Ã

(

1

Γ̃R

+
1

γR(x̃)

)

2 〈I〉

3(−e)Ω
, (45)

is determined by the Cooper pair tunneling rate γR in
addition to the quasiparticle tunneling rate Γ̃R. This is in
contrast to the JQP cycle where it is only the necessarily
small 1/Γ̃R which determines the displacement. Since
the rates and the current are implicitly dependent on 〈x̃〉
via the Cooper pair tunneling rate, Eq. (45) is a self-
consistency equation.

Going beyond the thermal-oscillator approximation,
we use again the truncated master equation and the nu-
merical approach to calculate the current via the general
Eqs. (38) and (39). In order to assess the quality of the
Gaussian approximation, we first compare the results of
the two approaches for low coupling strength. The re-
sult is shown in Fig. 7, where we plot the difference in
the inverse current between the weakly coupled and the
uncoupled system. The results of the Gaussian approxi-
mation and the numerically evaluated lines are in excel-
lent agreement. The Lorentzian lineshape of the current
(inset of Fig. 7) is preserved in case of the weak coupling.

The change in the average current due to the coupling
to the oscillator can be most transparently illustrated
by plotting the difference of the inverse currents in the
coupled and the uncoupled cases, see Fig. 7. As ob-
vious from Eq. (40) the inverse current 1/ 〈I〉 is given
by the sum of rates involving the various transport pro-
cesses. In the thermal oscillator approximation, the func-
tion 1/ 〈I〉 (Ã)−1/ 〈I〉 (Ã = 0) changes sign as a function

of eV/~Ω at a position which is proportional to 2Ã〈x̃〉 as
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Ã = 0.032

FIG. 8: Average current 〈I〉 versus bias voltage for Ã = 0.01

and Ã = 0.032, T̃B = 2.5, further parameters as in Fig. 7. For
increased coupling the Lorentzian peak becomes distorted and
two stable solutions emerge which result in two stable values
for the current.

is shown in Eq. (B15). We expect this sign change to
be the most feasible way to experimentally observe the
influence of the NR on the SSET current and to investi-
gate quantitatively the coupling strength using only the
average current.

The bistability of the oscillator states, which was al-
ready discussed in the previous section, also manifests
itself in the current through the SSET. For increased cou-
pling, we find that the equation of motion derived within
the Gaussian approximation has up to three solutions,
of which two correspond to stable currents. The result-
ing current-voltage characteristic is shown in Fig. 8. In
the center, the usual DJQP resonance is clearly visible.
While for very low coupling Ã ≈ 0.01, the current still
follows approximately a Lorentzian, strong deviations be-
come visible already for Ã = 0.032.

In an experimental setup, we do not expect two sta-
ble currents to be distinguishable. Indeed, a current
measurement of the SSET-resonator system will yield a
weighted average64 because decoherence effects will lead
to a switching between the two stable configurations on
time scales large compared to the oscillation period but
small compared to the measurement resolution.60 These
switching rates can easily be inferred from a comparison
of the measured current to the two stable values and from
the current noise, as we shall show in section V.

V. NOISE PROPERTIES

A. Charge noise

In the past, linear-response arguments9 have been used
to support the idea that a generic detector acts on the
resonator in the same way as a second thermal bath, and
that the backaction on the resonator caused by charge
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fluctuations on the island can be described essentially
by two parameters, a damping rate γeff and an effective
temperature kBTeff . These are related to the charge-
fluctuation spectrum

Sn(ω) =

∫ ∞

−∞

dt eiωt〈〈n(t)n(0)〉〉 . (46)

via

γ̃eff(ω) = Ã2 Sn(ω) − Sn(−ω)

2ω
, (47)

T̃eff(ω) = Ã2 Sn(ω) + Sn(−ω)

2γ̃eff(ω)
, (48)

in the limit kBTeff(ω) ≫ ~ω, where ω is given in units of

Ω, T̃eff = kBTeff/~Ω and γ̃eff = γeff/Ω. Since these ex-
pressions follow from a linear-response calculation, both
effective quantities are written in terms of the bare
charge-noise, calculated in the absence of coupling with
the oscillator.

Investigating the retarded and advanced (absorption
and emission) contribution of the charge correlation ex-
plicitly, we can derive an analytic expressions for Sn(ω)
for the uncoupled SSET (see Appendix D)

Sn(ω) − Sn(−ω)

2ω
= 2i〈n|

[

ω2 + M2
]−1

K−|p〉 , (49)

Sn(ω) + Sn(−ω)

2
= 2〈n|M

[

ω2 + M2
]−1

(K+ − 〈n〉) |p〉 ,

(50)

where M denotes again the evolution matrix of the SSET
system, 〈n| is defined such that 〈n|p〉 = 〈n〉 and K±

denote coupling matrices given explicitly in Eqs. (C5)
and (C6). Note that 〈〈n2〉〉 = 〈n2〉 − 〈n〉2 = 〈n|K+ |p〉 −
〈n〉2 and K− acts only on the off-diagonal elements of
〈p̂kj〉, i.e. the Cooper pair tunneling terms.

The self-consistency equation for 〈〈x̃2〉〉, that has to be
solved in the Gaussian approximation, can be written as

〈〈x̃2〉〉 =
2γextTB + 2γSSETTSSET(x̃, x̃2)

γext + γSSET(x̃, x̃2)
, (51)

where

γSSET(x̃, x̃2) = i(2Ã)2 (52)

〈n|
(

1− γ̃ext(γ̃ext + M)
)(

1 + γ̃extM + M2
)−1

K−|p〉 ,

2γSSETTSSET(x̃, x̃2) = (2Ã)2 (53)

〈n|
(

γ̃ext + M
)(

1 + γ̃extM + M2
)−1(

K+ − 〈n〉
)

|p〉;

We observe that the mean-field equation in second or-
der provides the same physics as linear-response the-
ory, i.e. γ̃eff at ω/Ω = 1 is of the same form as γSSET.
Since Eq. (51) is a self-consistency equation for 〈〈x̃2〉〉
and not for the effective oscillator energy as in Eqs. (47)
and (48) the expressions differ by a factor of 4. The
result in Eq. (51) is more accurate in the sense that

the parameters of the damped oscillator are involved:
1 + γ̃extM + M2 =

(

1− (γ̃ext/2)2
)

+
(

M + γ̃ext/2)2 with

a renormalized frequency of Ωr =
√

Ω2 − (γext/2)2 and
additional damping due to γext/2.

Note that Eq. (51) is a self-consistency equation for
〈x̃2〉 since |p〉 = |p(x̃, x̃2)〉 and it has to be solved to-

gether with 〈x̃〉 = 2Ã〈n〉. Even if it is assumed that

|p〉 = |p(0, 2T̃B)〉, the expression contains a correction
due to the finite quality factor of the NR.

Whereas the approach describing the detector as an ef-
fective bath proved very successful in providing a simple
physical explanation of experiments,10 some of its short-
comings have started to be identified in recent theoret-
ical works.61,62 For example, it has very recently been
proposed62 that the signature of the oscillator in the
charge noise spectrum of a generic detector is not the
one of a thermal oscillator. In the light of these findings,
the calculation of the full frequency-dependent charge
noise spectrum of the SSET near the DJQP in the pres-
ence of an oscillator becomes relevant, even more so since
the charge-noise spectrum is an experimentally accessible
quantity.

As shown in Appendix D, it is possible to use the
master-equation approach to derive formal expressions
for Sn(ω), at least for weak coupling in the thermal-
oscillator approximation. However, it turns out that
these expressions are difficult to evaluate explicitly for
stronger couplings (in the Gaussian approximation). On
the other hand, the fully numerical approach presented in
section II C can easily be adapted to allow the calculation
of finite-frequency correlation functions of system (as op-
posed to bath) operators, using the quantum regression
theorem.63,64 In the following, we therefore discuss only
the charge-noise spectrum obtained numerically. Note
that we verified that our algorithm reproduces accurately
the known charge and position fluctuation spectra in the
uncoupled (Ã = 0) regime.

Figure 9 shows the symmetrized (in frequency) charge-
noise spectra, Ssymm

n (ω) = [Sn(ω)+Sn(−ω)]/2, obtained
for different values of the bias-voltage detuning from the
DJQP resonance. The oscillator state, i.e. thermal or
driven, can be determined from the Fock space probabil-
ity distribution in Fig. 5. The inset shows that the sig-
nature of the oscillator in Ssymm

n (ω) appears prominently
around the natural frequency of the oscillator. Away
from ω ∼ Ω, the charge spectrum is only weakly affected
by the oscillator, since the coupling of the island to the
resonator changes the effective biasing conditions of the
SSET.

The main panel of Fig. 9 shows the evolution of the
charge-noise spectra when the system is taken from the
“cooling” region (V = −1) through the resonance point
(V = 0), to the voltage regime where the state of the os-
cillator becomes highly non-thermal. Unsurprisingly, the
overall signal around Ω increases dramatically when the
oscillator enters the driven regime, reflecting the overall
increase in the magnitude of Sx(ω ∼ Ω) when the oscilla-
tors energy is increased. Associated with this increased
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FIG. 9: Frequency-dependent charge noise of the charge n on
the SSET, symmetrized contribution Ssymm

n (ω), versus ω/Ω
for different values of the bias voltage eV/~Ω measured from
the resonance. Parameters are identical to Fig. 5. While there
is no structure in the case V = 0, we can distinguish if the
oscillator is driven or cooled by the symmetry of the peak
at ω = Ω. Inset: Ssymm

n (ω) in a larger parameter regime;

numerical calculation Ã = 0.1 compared to analytical result
Ã = 0.

magnitude is an overall reduction of the linewidth, that
is again explained rather straightforwardly via the de-
creased total damping rate in this region (γeff < 0).

The most interesting observation to be made about
Fig. 9 is perhaps the striking similarity between the spec-
tra at V < 0 and V ≫ 0. In both cases, we find not only a
resonance at the renormalized frequency of the oscillator,
but also a dip at its bare frequency, exactly as derived
in Ref. [62] for a generic detector. Note that the renor-

malized frequency Ωr(V ) =
√

Ω2 − [(γext + γeff(V ))/2]2

depends on the detuning V . For V < 0 we find γeff > 0,
such that the renormalized frequency Ωr is smaller than
Ω. In the region V > 0 and γeff < 0, the situation
is reversed and the resonance appears at frequencies Ωr

higher than Ω, while the dip is pinned. No structure is ob-
served exactly at V = 0 which relates to γeff(V = 0) = 0
since absorption and emission of energy from the SSET
to the oscillator at the DJQP resonance is equal.

The presence of a dip is not compatible with a
purely “thermal” state of the oscillator, even in cases
where the Fock state probability distribution function
P (nosc) decays exponentially like in the fully-thermal
case [cf. Fig. 5]. Not only does this result confirm that the
simple model used in Ref. [62] also applies to the com-
plex SSET-resonator system, it also demonstrates that
the “Fano-like” lineshape, where both a resonance and
a dip appear in the spectrum of the charge noise, char-
acterizes nicely the charge noise spectrum on both the
“driving” and “cooling” sides of the resonance.

B. Current noise

We argued previously that the non-thermal oscillator
states (i.e., cooling and driving of the resonator) manifest
themselves in the cumulants of coupled system. There-
fore, it is reasonable to expect that the coupling with the
NR will modify the current fluctuations of the SSET.

In the following, we will focus mainly on the Fano fac-
tor, i.e. the current noise at ω = 0 which is easily ac-
cessible by standard noise measurement techniques. The
frequency-dependent current noise is given by MacDon-
ald’s formula65

SI(ω) =

∫

dteiωt〈〈{I(t), I(0)}〉〉

= (−e)2ω

∞
∫

0

dt sin(ωt)
d

dt
〈〈n2

R(t)〉〉 . (54)

From this formula, we can deduce the following zero-
frequency limit,47,64

SI(ω → 0) = (−e)2 lim
t→∞

d

dt
〈〈n2

R(t)〉〉 . (55)

Thus we have to determine the long-time limit of
d
dt〈〈n

2
R(t)〉〉. Note that we assume for the derivation sym-

metric capacitances such that SLL(ω = 0) = SRR(ω = 0)
due to charge conservation.44 Since we use the sym-
metrized current noise, the Fano factor is defined as
F = SI(ω = 0)/(−e) 〈I〉 without a factor of 2.

In order to use Eq. (20) to calculate numerically the
current noise, we follow closely the approach presented
in Ref. [53]. The original approach which applied to in-
coherent processes can be generalized to the coherent
Josephson tunneling. The zero-frequency current noise
is thus given by

SI(ω → 0) = (−e)2
[

Trn Trosc(Inoiseρstat)

− 2 Trn Trosc(ItotalRItotalρstat)
]

(56)

where Itotal = Iqp − 2I+
CP + 2I−

CP is the superoper-
ator describing the total current as defined previously,
Inoise = Iqp + 4I+

CP + 4I−
CP and R is the pseudoinverse

of the Liouvillian L.64 We compared both the Fano factor
and the frequency-dependent current noise in the uncou-
pled case with the exact expressions of Ref. 43 (see also
App. E) and verified thus the correctness of Eq. (56).

As in the previous section it is possible to obtain an an-
alytic expression in the thermal-oscillator approximation.
For details of the calculation we refer to Appendix E. We
find

F =
3

2
+

3

2

−fsym + fasym
(

1

Γ̃L

+
1

Γ̃R

+
1

γL
+

1

γR

)2 . (57)

The term

fsym = 3

(

1

Γ̃L

+
1

Γ̃R

) (

1

γL
+

1

γR

)

(58)
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FIG. 10: Difference in Fano factors ∆F = F (Ã) − F (Ã = 0)

in units of Ã2 as a function of bias voltage eV/~Ω for Γ̃L =

Γ̃R = 10, J̃L = J̃R = 2, γ̃ext = 0.0001 and T̃B = 2.5. Lines
depict results of the numerical approach. The results of the
Gaussian approximation (points) fit quantitatively only for

Ã < 0.01. Inset: the Fano factor F (Ã = 0.02) decreases at
V ≈ 0 when the Cooper pair tunneling is resonant.

reduces the noise41,66 at the resonance; this is a conse-
quence of the coherence of the Cooper pair tunneling.
The asymmetric part

fasym =

(

1

Γ̃L

−
1

Γ̃R

)2

+

(

1

Γ̃L

−
1

Γ̃R

) (

1

γL
−

1

γR

)

+

(

1

γL
−

1

γR

)2

+
ǫ22,0

(Γ̃R/2)2J̃2
L

+
ǫ21,−1

(Γ̃L/2)2J̃2
R

(59)

increases the noise level, for example if the coupling is
asymmetric, Γ̃L 6= Γ̃R, or the system is tuned away from
the resonance, i.e. ǫ2,0 6= 0 or ǫ1,−1 6= 0.

The coupling of the SSET and the NR enters via the
〈x〉 dependence of the Cooper pair tunneling rates γL(x)
and γR(x) defined in Eqs. (41) and (42). In the thermal-
oscillator approximation the effect is thus of second order
in A as observed already for the current. In analogy to
the previous section the coupling of the SSET to the NR
leads in the thermal approximation only to a shift in the
resonance position of the SSET. Since the resonance con-
dition is important for coherent Cooper pair tunneling,
the shift manifests itself in a higher noise signal around
V = 0, leading to a peak in ∆F = F (Ã 6= 0)−F (Ã = 0),
see Fig. 10. At large voltages both the Fano factor of the
coupled and uncoupled SSET converge to the value 3/2.

In order to access the regime of increased coupling,
we investigated the current noise also in the Gaussian
approximation and compared the result to the numerical
calculation explained below. For very low coupling up
to Ã = 0.01, as long as the resonator remains close to
its thermal state, the two approximations coincide. For
increased coupling, however, deviations from the effective

backgate behavior appear. A plot of the difference in
Fano factors ∆F as a function of the bias voltage is shown
in Fig. 10.
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FIG. 11: Logarithmic Fano factor ln F and oscillator energy
E/~Ω as a function of bias voltage eV/~Ω. The parame-

ters are eVG/~Ω = 2.5, Γ̃L = Γ̃R = 12, J̃L = J̃R = 2.5,

γ̃ext = 0.001, T̃B = 3, and Ã = 0.1. The Fano factors shows a
first peak when the system enters the driven state. At the on-
set of the bistability, the Fano factor increases drastically on
the logarithmic scale, which we attribute to telegraph noise
due to switching between the two stable configurations. In-
set: frequency-dependent current noise in the bistable region
(eV/~Ω = 12.8) which decays on the scale of the switching
rates.

We find that the central peak in ∆F is accompanied
by two negative side peaks where the current noise of the
coupled SSET is lower than the uncoupled value. In the
cooling and driving regimes the SSET absorbs and emits
energy to the resonator in order to move closer to the
resonance position. As pointed out before, the noise at
the resonance is reduced due to the coherent Cooper pair
tunneling and therefore the cooling and driving mecha-
nisms are responsible for the negative side peaks. As in
the energy of the resonator, Fig. 6, the driving is stronger
than the cooling, which manifests itself in the heights of
the negative side peaks.

Even before the bistability arises, the coupling between
the SSET and the NR leads to a modification of the cur-
rent noise, from which one can deduce if (and to which
extent) the oscillator is cooled or driven.

In the bistable regime, the master equation approach
leads to two solutions for the noise corresponding to the
two stable solutions for the current. We argued previ-
ously that in this regime, a thermal and a driven solu-
tion coexist. Experimentally, however, the two solutions
will not be completely stable and the system will switch
between the two states on a time scale much slower than
the other system time scales. As was shown generally
for bistable systems,53,54 and was also recovered for the
case of the JQP,40 the experimentally measured noise will
then be dominated by the switching between the two sta-
ble states and will then essentially be telegraph noise.
This type of low-frequency noise is most clearly visible
in the Fano factor which we have evaluated using the
numerical approach in Fig. 11.
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The Fano factor first peaks roughly at the transition
between the thermal state and the driven state. It then
descends to a local minimum. This behavior is correlated
to the stationary value of the average position of the os-
cillator, 〈x〉, which acts as an effective backgate on the
SSET as discussed in detail in connection with Fig. 10. In
the driven state the transfer of energy from the SSET to
the NR is maximal and therefore we observe a minimum
in the Fano factor. Beyond the pure driven state, the
system reaches the bistable region which clearly shows
up as a drastically increased Fano factor on the logarith-
mic scale in Fig. 11. We attribute this zero-frequency
noise feature to a slow switching between the two stable
configurations of the system.40

The inset of Fig. 11 shows the frequency-dependence
of the current noise at the voltage where the Fano factor
is maximal. As expected for a bistable system the value
drops fast from the superpoissonian value on a scale given
by the sum of the two switching rates64, which are very
slow compared to the other scales of the system. In the
frequency-dependent current noise [not explicitly shown
here] we find signatures at the frequency of the oscilla-
tor and at higher harmonics, which appear as a thermal
resonance on top of the uncoupled current noise of the
SSET.

VI. CONCLUSIONS

In conclusion, we have provided a comprehensive treat-
ment of a superconducting single-electron transistor ca-
pacitively coupled to a nanomechanical resonator. As-
suming a linearized coupling for typical system parame-
ters, we have found that signatures of the mutual inter-
action manifest themselves as well in physical quantities
related to the oscillator as in the current and noise prop-
erties of the transistor.

It is known that this setup with the SSET close to the
resonance condition for the double Josephson quasipar-
ticle process is especially suitable to cool the oscillator
or drive it. We confirm this behavior and explain how
the different approximations fail or succeed in capturing
these features. We use two complementary approaches, a
purely numerical solution of the Liouville equation and a
mean-field analysis, which lead to identical results in the
accessible parameter region. In addition to driving effects
of the oscillator, our solution predicts the emergence of
a bistable regime for increased coupling.

Although the consequences of cooling and driving the
resonator have been studied in previous work, the ques-
tions of if and how these non-thermal states can be mea-
sured in the transport properties of the coupled SSET
close to the DJQP resonance were not discussed in the
literature. This obvious gap is addressed in our work.
We find that the current through the SSET gives a mea-
sure of the displacement of the oscillator since, at the
lowest-order, the coupling with the NR modifies the gat-
ing condition of the SSET.

Investigating the fluctuations close to the resonance
frequency of the mechanical oscillator, we find pro-
nounced effects. For instance, the frequency-resolved
charge noise shows a sharp resonance/dip structure close
to the resonator frequency, which allows to estimate the
sign of the effective damping. Moreover, we have stud-
ied the zero-frequency current noise, i.e. the Fano factor.
Depending on the applied voltages, the SSET coupled
to an NR results in an increase or decrease of the Fano
factor compared to the uncoupled case. We could show
that a decrease is related to driving or cooling of the
NR. Furthermore we find that the Fano factor increases
notably as soon as the system enters the bistable state.
This feature can be used experimentally to pinpoint the
bistable region. The switching rates between the two
stable regimes can be identified from the frequency de-
pendence of the current noise.

In comparison to an SSET driven at a JQP resonance,
the DJQP shows stronger effects for lower couplings. Ex-
tending the parameter regime to strong coupling, differ-
ent methods have to be applied and also the assumption
of a linear coupling is challenged. This will be the subject
of future work.
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Appendix A: Coupling of SSET and NR

The coupling between the SSET and the NR originates
from a capacitive coupling between the island with the
gated resonator. The displacement x, i.e. the deviation
from the equilibrium distance d, determines the capaci-
tance CN (x)

CN (x) = ǫ0
A

x + d
= C0

N − C0
N

x/d

1 + x/d
, (A1)

and thus the charging energy EC and the charge on the
island n0

EC(x) =
e2

2

1

CL + CR + CG + CN (x)

= E0
C

1

1 −
C0

N

CΣ

x/d
1+x/d

, (A2)

n0(x) =
1

e

(

CLVL + CRVR + CGVG + CN (x)VN

)

= n0
0 −

C0
NVN

e

x/d

1 + x/d
. (A3)
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The linear expansion of the charging term of the Hamil-
tonian HC in x yields

EC(x)
[

n + n0(x)
]2

= E0
C

(

n + n0
0

)2
(A4)

+ 2E0
C

(

n + n0
0

)C0
NVN

e

(

−
x

d

)

.

We neglect a shift of the charging energy of the order
of ECC0

N/CΣ since in typical experimental setups,10 this
prefactor is much smaller than the term in the second line
of Eq. (A4). This term would be proportional to x(n +
n0)

2 and would describe a slightly different coupling.
Since n0

0 constitutes a constant energy offset it is ne-
glected in the calculation. The interaction constant in
HN,I = −A n x is thus given by

A = 2E0
c

C0
NVN

ed
=

C0
N

CΣ

eVN

d
. (A5)

and can be tuned by changing the gate voltage VN . Note
that we assume an experimental setup where the charge
density on the dot can be changed by a (plunger) gate VG

and there is an additional gate voltage from the oscillator
VN .

The dimensionless quantity Ã in our notation is thus

Ã =
A

~Ω
x0 =

C0
N

CΣ

eVN

~Ω

x0

d
. (A6)

With the parameters from Ref. [10], for instance, we can
get some very rough estimates for the renormalized quan-

tities of the SSET. We find that the parameters are of the
order of

Γ̃α = 2.5 − 17 , (A7)

J̃α = 1 − 2.5 , (A8)

Ã = 0.001− 0.01 . (A9)

Appendix B: Mean-field equations for

thermal-oscillator approximation

Using the thermal-oscillator approximation in Eq. (10)
for the quantities 〈p̂kj〉 we get a closed set of equations
for

|p〉 =
(

〈p̂−1,−1〉 〈p̂1,1〉 〈p̂1,−1〉

〈p̂−1,1〉 〈p̂2,2〉 〈p̂2,0〉 〈p̂0,2〉
)T

, (B1)

where 〈p̂00〉 = 1−〈p̂−1,−1〉 −〈p̂1,1〉 −〈p̂2,2〉 is determined
by the normalization of the density, Tr[ρ] = 1. |p〉 fulfills
a matrix equation

d

dt̃
|p〉 = −M |p〉 + iJ̃L |c〉 , (B2)

where |c〉 = (0, 0, 0, 0, 0, 1,−1)T and the evolution matrix
M is defined as

M =





















Γ̃L . −iJ̃R iJ̃R . . .

. . iJ̃R −iJ̃R −Γ̃R . .

−iJ̃R iJ̃R Γ̃L/2 + iǫ1,−1 . . . .

iJ̃R −iJ̃R . Γ̃L/2 − iǫ1,−1 . . .

. . . . Γ̃R iJ̃L −iJ̃L

iJ̃L iJ̃L . . 2iJ̃L Γ̃R/2 + iǫ20 .

−iJ̃L −iJ̃L . . −2iJ̃L . Γ̃R/2 − iǫ20





















, (B3)

where . stands for the entry 0. As discussed in the main
text we normalize the SSET quantities with respect to
resonator properties, hence the quasiparticle tunneling
Γ̃α = Γα/Ω, the Cooper pair tunneling J̃α = Jα/2~Ω
and the resonance energies

ǫ1,−1 =
4EC

~Ω
n0 +

eV

~Ω
− 2Ã 〈x̃〉 , (B4)

ǫ2,0 =
4EC

~Ω
(n0 + 1) −

eV

~Ω
− 2Ã 〈x̃〉 , (B5)

are shifted due to the coupling to the resonator in the
thermal approximation. As can be seen in these expres-
sions, the resonator is only coupled to the off-diagonal

terms in the density matrix ρ, which correspond to
Cooper pair tunneling events.

Some assumptions are made to simplify to expressions
for ǫ2,0 and ǫ1,−1. We assume that the SSET is tuned to

the DJQP resonance with nDJQP
0 = −1/2 and therefore

we find deviations from it by

4EC

~Ω
n0

0 =
4EC

~Ω
nDJQP

0 + 2
CG

CΣ
∆

eVG

~Ω
, (B6)

where VG is the gate voltage measured from V DJQP
G

(symmetric bias voltage assumed). Furthermore there is
a fixed value of the bias voltage V DJQP which is chosen
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such that

2
eV DJQP

~Ω
=

4EC

~Ω
, (B7)

and we denote any shift away from V DJQP as ∆V . Con-
sequently the energy detuning is given by the gate and
bias voltage as

ǫ1,−1 = 2
CG

CΣ
∆

eVG

~Ω
+ ∆

eV

~Ω
− 2Ã 〈x̃〉 , (B8)

ǫ2,0 = 2
CG

CΣ
∆

eVG

~Ω
− ∆

eV

~Ω
− 2Ã 〈x̃〉 . (B9)

For convenience only, it is assumed in the calculations
that ∆eVG/~Ω and ∆eV/~Ω have the same prefactors
(see Eqs. (43) and (44)) and for abbreviation also ∆ is
mostly skipped.

In the stationary limit, i.e. d/dt |p〉 = 0, we find im-
mediately

|p〉 = iJ̃LM−1 |c〉 , (B10)

or written down explicitly

|p〉 =
1

2

(

1

γR
+

1

γL
+

1

Γ̃R

+
1

Γ̃L

)−1

×





































1
Γ̃L

1
Γ̃L

+ 2
γR

−iJ̃R
2

γR

1
Γ̃L
2

+iǫ1,−1

iJ̃R
2

γR

1
Γ̃L
2

−iǫ1,−1

1
Γ̃R

iJ̃L
2

γL

1
Γ̃R
2

+iǫ2,0

−iJ̃L
2

γL

1
Γ̃R
2

−iǫ2,0





































. (B11)

This result can be inserted in Eqs. (38) and (39) and we
find the result for the current 〈I〉, Eq. (40).

Note that 〈IND〉 = 2〈ID〉 follows immediately from
the equation (B2)

d

dt̃
〈p̂11〉 = −iJ̃R

(

〈p̂1,−1〉 − 〈p̂−1,1〉
)

+ Γ̃R 〈p̂2,2〉 (B12)

in the stationary limit. This expression is due to the
nature of the DJQP process and does not change if we
go to more sophisticated approximations.

The shift of the oscillator resonance is proportional to
the charge on the island,

〈n〉 = 2 〈p̂2,2〉 + 〈p̂1,1〉 − 〈p̂−1,−1〉

=

(

1

γR
+

1

Γ̃R

)

/

(

1

γR
+

1

γL
+

1

Γ̃R

+
1

Γ̃L

)

=

(

1

γR
+

1

Γ̃R

)

2 〈I〉

3(−e)Ω
. (B13)

As obvious from Eq. (40) the slowest rate limits the cur-
rent and thus determines its value. In the symmetric
case J̃L = J̃R = J̃ and Γ̃L = Γ̃R = Γ̃ the current can
also be written more explicitly in terms of the system
parameters59

〈I〉 = (−e)Ω
6Γ̃J̃2

2ǫ22,0 + 2ǫ21,−1 + 8J̃2 + Γ̃2
. (B14)

As discussed in the main text the shift due to the coupling
to the leads can be read off from

3(−e)Ω

2

( 1

〈I〉
−

1

〈I〉 (Ã = 0)

)

(B15)

=
1

γL(x̃)
−

1

γL(x̃ = 0)
+

1

γR(x̃)
−

1

γR(x̃ = 0)
.

In the symmetric case JL = JR ≡ J and ΓL = ΓR ≡ Γ
as assumed in the main text, this can be written more
explicitly as

3(−e)Ω

2

( 1

〈I〉
−

1

〈I〉 (Ã = 0)

)

= 2(2Ã 〈x̃〉)

(

2Ã 〈x̃〉 − 2
eVG

~Ω

)

. (B16)

Since 〈x̃〉 depends on the bias voltage V , the value of

2Ã〈x̃〉(V, VG) can be extracted from the intersection with

the voltage axis when plotting 1/〈I〉(Ã) − 1/〈I〉(Ã = 0).

Appendix C: Mean-field equations for Gaussian

approximation

In the thermal-oscillator approximation we assumed
that 〈〈nx〉〉 = 〈〈nv〉〉 = 0. For stronger coupling, the ac-
curacy of this assumption get worse and we proceed to
calculate 〈〈nx〉〉 = 〈n ||xp〉〉 with 〈n| = (−1, 1, 0, 0, 2, 0, 0)
in the Gaussian approximation. Here ||xp〉〉 denotes
the vector of cumulants

〈

〈xp̂kj〉
〉

= 〈xp̂kj〉 − 〈x〉 〈p̂kj〉.
Higher-order expectation values are assumed to vanish,
for example from 〈〈x2p̂kj〉〉 = 0 it follows that

〈

x2p̂kj

〉

= 2 〈x〉 (〈xp̂kj〉 − 〈x〉 〈p̂kj〉) +
〈

x2
〉

〈p̂kj〉 .

(C1)

This approximation leads us to the following set of equa-
tions:

d

dt̃
|p〉 = −M |p〉 + iJ̃L |c〉 + 2iÃK− ||x̃p〉〉 , (C2)

d

dt̃
||x̃p〉〉 = −M ||x̃p〉〉 + ||ṽp〉〉 + 2iÃ〈〈x̃2〉〉K− |p〉 ,

(C3)

d

dt̃
||ṽp〉〉 = −M ||ṽp〉〉 − ||x̃p〉〉 − γ̃ext ||ṽp〉〉

+ 2Ã(K+ − 〈n〉) |p〉 , (C4)
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where the coupling matrices are given by

K+ = diag (−1, 1, 0, 0, 2, 1, 1) , (C5)

K− = diag (0, 0, 1,−1, 0, 1,−1) . (C6)

This set of equations can be solved in the stationary limit
and is given here in matrix representation

|p〉 = iJ̃L

[

M + i(2Ã)2K−

(

1 + γ̃extM + M2
)−1 {

(K+ − 〈n〉) + i〈〈x̃2〉〉(γ̃ext + M)K−

}

]−1

|c〉 , (C7)

||x̃p〉〉 = 2Ã
(

1 + γ̃extM + M2
)−1 [

(K+ − 〈n〉) + i〈〈x̃2〉〉(γ̃ext + M)K−

]

|p〉 . (C8)

Since in the stationary limit

〈n||ṽp〉〉 = 〈n|M||x̃p〉〉 (C9)

we do not need to calculate 〈〈nṽ〉〉 and find instead

〈〈x̃2〉〉 = 〈〈ṽ2〉〉 + 2Ã〈n||x̃p〉〉 = 2T̃B + 2Ã/γ̃ext〈n|M||x̃p〉〉 + 2Ã〈n||x̃p〉〉 . (C10)

Using the general solution for ||x̃p〉〉 we can rewrite this equation with the expression

〈〈x̃2〉〉 =
2γ̃extT̃B + 2γSSETTSSET(x̃, x̃2)

γ̃ext + γSSET(x̃, x̃2)
, (C11)

where we define

γSSET(x̃, x̃2) = i(2Ã)2〈n|
(

1− γ̃ext(γ̃ext + M)
)(

1 + γ̃extM + M2
)−1

K−|p(x̃, x̃2)〉 ,

2γSSETTSSET(x̃, x̃2) = (2Ã)2〈n|
(

γ̃ext + M
)(

1 + γ̃extM + M2
)−1(

K+ − 〈n〉
)

|p(x̃, x̃2)〉 .

The equation for 〈〈x̃2〉〉 has to be solved together with the
expression for 〈x̃〉 which leads in some parameter regime
to more than one solution. This bistability of the model
is discussed in detail in the main text.

Appendix D: Charge noise of the SSET

To calculate the charge noise in the DJQP we evaluate
the expression

Sn(ω) =

∫ ∞

−∞

dteiωt〈〈n(t)n(0)〉〉 (D1)

=

∫ ∞

0

dt cos(ωt)
(

〈〈n(t)n(0)〉〉 + 〈〈n(−t)n(0)〉〉
)

+ i

∫ ∞

0

dt sin(ωt)
(

〈〈n(t)n(0)〉〉 − 〈〈n(−t)n(0)〉〉
)

and take into account that Sn(t) is not necessarily sym-
metric. Therefore we introduce two new functions66

χ(t) = Trosc TrnR
{e−iHt/~nρeiHt/~} , (D2)

η(t) = Trosc TrnR
{e−iHt/~ρneiHt/~} . (D3)

The partial traces are taken over the oscillator degree of
freedom and the tunneled charge nR. These functions

have the properties 〈〈n(t)n(0)〉〉 = Trn{nχ(t)}−〈n〉2 and
〈〈n(−t)n(0)〉〉 = Trn{nη(t)}−〈n〉2 where Trn denotes the
trace of the charge states of the island. The functions
χ(t) and η(t) fulfill the same differential equation

d

dt̃
|χ〉 = −M|χ〉 + iJ̃L 〈n〉 |c〉 , (D4)

d

dt̃
|η〉 = −M|η〉 + iJ̃L 〈n〉 |c〉 , (D5)

with different initial conditions

|χ(0)〉 = Trosc TrnR
{nρ} = Kχ|p〉 , (D6)

|η(0)〉 = Trosc TrnR
{ρn} = Kη|p〉 , (D7)

where Kχ = K+ + K− and Kη = K+ − K−. Straight-
forwardly we find

〈〈n(t)n(0)〉〉 + 〈〈n(−t)n(0)〉〉 = 2 〈n| e−Mt̃ (K+ − 〈n〉) |p〉

〈〈n(t)n(0)〉〉 − 〈〈n(−t)n(0)〉〉 = 2 〈n| e−Mt̃K−|p〉 , (D8)

and consequently

Sn(ω) = 2 〈n|
M

(ω/Ω)2 + M2
(K+ − 〈n〉) |p〉

+ 2i 〈n|
(ω/Ω)

(ω/Ω)2 + M2
K−|p〉 . (D9)
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For example the effective damping and temperature in
linear-response theory is related to

Sn(ω) − Sn(−ω)

2(ω/Ω)
= 2i〈n|

1

(ω/Ω)2 + M2
K−|p〉 , (D10)

Sn(ω) + Sn(−ω)

2
= 2〈n|

M

(ω/Ω)2 + M2
(K+ − 〈n〉) |p〉 ,

(D11)

as is discussed in more detail in the main text. Note the
striking similarity to the self-consistency equation for the
Gaussian approximation, Eqs. (51-54).

Appendix E: Calculation of the current noise

We want to calculate d/dt
〈〈

n2
R(t)

〉〉

and study there-
fore the time-evolution of

d/dt
〈

n2
R(t)

〉

= Tr
{

ρ̇(t)n2
R

}

(E1)

= −
i

~
Tr

{

(ρnR + nRρ) [nR, H ]
}

.

Therefore we introduce the nR-resolved density matrix.
Defining the operator

p̂
n′

R,nR

kj = |j〉 〈k| ⊗ |nR〉 〈n
′
R| (E2)

such that 〈p̂kj〉 = Trosc TrnR
Trn{ρ|j〉〈k|⊗|nR〉〈n

′
R|} and

〈nRp̂kj〉 = Trosc TrnR
Trn{ρnR|j〉〈k| ⊗ |nR〉〈n

′
R|}. Note

that 〈p̂kjnR〉 is a different quantity since nR and p̂
n′

R,nR

kj
do not commute.

We assume the stationary limit in the sense that 〈p̂kj〉
does not depend on time. Then, the nR-resolved den-
sity operator can be calculated in the thermal-oscillator
approximation where the differential equation reads

d

dt̃
|nRp〉 (t) = −M |nRp〉 + |A〉 + 〈nR〉 iJ̃L |c〉 , (E3)

|A〉 =





















−2iJ̃R 〈p̂−1,1〉

Γ̃R 〈p̂22〉 + 2iJ̃R 〈p̂1,−1〉

−2iJ̃R 〈p̂1,1〉

2iJ̃R 〈p̂−1,−1〉
0
0
0





















, (E4)

since (−e)〈nR〉 = 〈I〉t is explicitly time-dependent (in
the stationary limit 〈I〉(t) ≡ 〈I〉), the differential equa-
tion has to be solved explicitly and we find

||nRp〉〉 (t̃) = e−Mt̃
∣

∣

∣

∣nRp(t̃ = 0)
〉〉

(E5)

+ (1 − e−Mt̃)M−1 |A〉 −
〈I〉

(−e)
M−1 |p〉 .

Note that |nRp〉 denotes similarily to previous defini-
tions the vector of finite 〈nRp̂kj〉 and ||nRp〉〉 = |nRp〉 −
〈nR〉 |p〉.

The noise itself has a structure similar to the current,
but with some correction terms from the counting of nR

〈I〉 = (−e)〈b |p〉 , (E6)

d/dt̃〈〈n2
R(t̃)〉〉 = 2(−e)2〈b ||nRp〉〉 + (−e)2Γ̃R 〈p̂22〉 (E7)

− 2(−e)22iJ̃R

(

〈p̂1,−1〉 + 〈p̂−1,1〉
)

,

〈b| =
(

0 0 2iJ̃R −2iJ̃R Γ̃R 0 0
)

. (E8)

If we apply MacDonald’s formula65 for the symmetrized
noise, i.e. SI(t) = SI(−t), we find [neglecting a factor e2]

SI(ω) =SI(ω = 0) − 2 〈b|M−1 (ω/Ω)2

(ω/Ω)2 + M2
|A〉

− 2 〈b|
(ω/Ω)2

(ω/Ω)2 + M2
|nRp(t = 0)〉 , (E9)

SI(ω = 0) =2 〈b|M−1

(

|A〉 −
〈I〉

(−e)
|p〉

)

(E10)

+ Γ̃R 〈p̂22〉 − 4iJ̃R

(

〈p̂1,−1〉 + 〈p̂−1,1〉
)

.

The explicit expression for SI(ω = 0) is given in the main
text.
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50 O. Schenk and K. Gärtner, Future Generation Computer

Systems 20, 475 (2004).
51 O. Schenk and K. Gaertner, Electron T Numer Ana 23,

158 (2006).
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