
Preserving universal resources for one-way quantum computing

Tetsufumi Tanamoto,1 Daniel Becker,2 Vladimir M. Stojanović,2 and Christoph Bruder2
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The common spin Hamiltonians such as the Ising, XY , or Heisenberg model do not have ground
states that are the graph states needed in measurement-based quantum computation. Various
highly-entangled many-body states have been suggested as a universal resource for this type of
computation, however, it is not easy to preserve these states in solid-state systems due to their
short coherence times. Here we propose a scheme for generating a Hamiltonian that has a cluster
state as ground state. Our approach employs a series of pulse sequences inspired by established NMR
techniques and holds promise for applications in many areas of quantum information processing.
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Measurement-based quantum computation (MQC) is a
new computing paradigm [1]. Of particular interest are
universal resources of one-way quantum computation, a
MQC scheme that requires only local measurements [2].
In the original scheme of one-way quantum computing,
one initially creates a many-qubit cluster state by apply-
ing phase gates or equivalent gate operations which can
be realized using the Ising interaction between qubits.
Many promising methods to generate cluster states us-
ing solid-state qubits have been proposed [3]. However,
these states are not the ground states of spin Hamilto-
nians with typical qubit-qubit interactions of Ising, XY ,
and Heisenberg types [4] (see Table I of [5]).

One of the established universal resources are two-
dimensional (2D) cluster states. Another promising can-
didates is the Affleck-Kennedy-Lieb-Tasaki (AKLT) state
on the honeycomb lattice [6], a resonance valence bond
(RVB) type state which is a special projected entan-
gled pair state (PEPS) [7, 8]. Yet, the AKLT state re-
quires non-trivial Hamiltonians with spin greater than
1/2, which are not easy to realize in solid-state systems.

In this Letter, we focus on how to construct stabilizer
Hamiltonians whose ground states are the desired cluster
states. Our approach relies on manipulating a two-body
Hamiltonian using pulse-sequence techniques developed
in the nuclear magnetic resonance (NMR) context [9, 10].
We show that in this way, starting from the Ising andXY
models, one can induce an effective dynamics described
by a stabilizer Hamiltonian

Hstab = −
∑

i

Ki , (1)

where Ki = σx
i

⊗

j σ
z
j are the correlation operators and

the direct product runs over all nearest neighbors of the
lattice site i. Thus, the main idea of this paper is to gen-
erate a stabilizer Hamiltonian by transforming the origi-
nal Hamiltonian.

We assume the original Hamiltonian to be of the form

H = H0 +Hint where

H0 =
∑

i

(Ωiσ
x
i + εiσ

z
i ) (2)

is a single-qubit part and Hint the interaction part. We
take Hint to be of Ising HIsing =

∑

i<j Jijσ
z
i σ

z
j , XY

HXY =
∑

i<j Jij [XY ]ij , and Heisenberg form HH =
∑

i<j Jij [XY Z]ij . Here, we set h̄ = 1, and use the

shorthands [XY ]ij ≡ σx
i σ

x
j + σy

i σ
y
j and [XY Z]ij ≡

σx
i σ

x
j + σy

i σ
y
j + σz

i σ
z
j . We will assume Jij = J if i and j

are nearest neighbors and Jij = 0 otherwise.

Note that a single correlation operator can be obtained
using a single-qubit Hamiltonian. For example in a one-
dimensional (1D) qubit array, K2 = σx

2σ
z
1σ

z
3 can be gen-

erated by the time evolution operator ei(π/2)(σ
z
1
+σz

2
+σz

3
).

However, it is not evident how to obtain a sum like
K2 +K3 from the single-qubit Hamiltonian.

Most fabricated solid-state qubit systems are nano-
devices, because a smaller size makes them more ro-
bust to decoherence. An example are quantum dot sys-
tems where smaller dots have larger energy-level spac-
ing. Since with diminishing size it becomes difficult to
address these devices individually, it is of interest to con-
sider switching on/off H0 and Hint independently. We
will show that, by using appropriate pulse sequences, this
is possible even if we start from an always-on Hamilto-
nian [11].

Ising model.– Following this strategy, we will now show
how to construct the stabilizer Hamiltonian using the
relation

e−iθσz
1
σz
2σx

1 e
iθσz

1
σz
2 = cos(2θ)σx

1 + sin(2θ)σy
1σ

z
2 ,

e−iθσz
1
σz
2σy

1e
iθσz

1
σz
2 = cos(2θ)σy

1 − sin(2θ)σx
1σ

z
2 . (3)

An important consequence of these equations is that,
for θ = π/4, we can increase the order of the Pauli-
matrix terms as in e−iπ

4
σz
1
σz
2σx

1 e
iπ
4
σz
1
σz
2 = σy

1σ
z
2 and

e−iπ
4
σz
1
σz
2σy

1e
iπ
4
σz
1
σz
2 = −σx

1σ
z
2 . For a 1D N -qubit chain,
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the starting single-qubit Hamiltonian is given by

Hs = Ω(σy
1 +

N−1
∑

i=2

σx
i + σy

N ) . (4)

By applying Hint as

e−iθ
∑

i<j
σz
i σ

z
j Hs e

iθ
∑

i<j
σz
i σ

z
j , (5)

we obtain the 1D stabilizer Hamiltonian Hstab for θ =
π/4. As an example, for N = 3 qubits, starting from
Hs = Ω(σy

1 + σx
2 + σy

3 ) we obtain Hstab = Ω(−σx
1σ

z
2 −

σz
1σ

x
2σ

z
3 − σx

3σ
z
2). If the system of N qubits has peri-

odic boundary conditions, we start from the Hamilto-
nian Hs = Ω

∑N
i=1 σ

x
i . Since Ising-type interaction terms

commute and the time-evolution operator in (5) factor-
izes, this process can be straightforwardly extended to
2D and 3D qubit systems, thus realizing the universal
resource discussed in the introduction. Consequently, for
Ising interactions, we can construct the stabilizer Hamil-
tonian by switching on HIsing only once.
We will now implement the above equations into a

pulse sequence that is familiar in the NMR context [9].
We assume that each pulse is sufficiently strong such
that interactions between qubits can be neglected dur-
ing the pulse sequences. We describe the time evolution
of the system by the density operator ρ(t) whose time de-
pendence is given by ρ(t) = exp(−iHt)ρ(0) exp(iHt) for
time-independent H. It is convenient to use the follow-

ing schematic notation for this evolution: ρ(0)
tH−→ ρ(t).

Then the process

ρ(0)
τ1Hint−→ τHs−→ −τ1Hint−→ ρ(t) (6)

for τ1 = π/(4J) corresponds to ρ(0)
τHstab−→ ρ(t) where

t = τ+π/(2J) and τ can be chosen arbitrarily. Note that
at the physical time t the state of the system is obtained
from the initial one by the time-evolution operator

e−iτHstab = e−i(π/4)
∑

i<j
σz
i σ

z
j e−iτHsei(π/4)

∑
i<j

σz
i σ

z
j .
(7)

As illustrated by Fig. 1(a), Hstab becomes the effective
system Hamiltonian. Its ground state is the originally
prepared cluster state, which is therefore preserved.
XY model.– In the following, we show how to gener-

ate the stabilizer Hamiltonian using the XY interaction,
assuming that H0 and Hint can be switched on/off inde-
pendently.
The stabilizer Hamiltonian is formed step by step

by bonding the nearest-neighbor operators. This
is because the XY interactions do not commute,
[[XY ]i−1,i, [XY ]i,i+1] 6= 0. We start from

e−iθ[XY ]12σx
1 e

iθ[XY ]12 = cos(2θ)σx
1 − sin(2θ)σz

1σ
y
2

e−iθ[XY ]12σy
1e

iθ[XY ]12 = cos(2θ)σy
1 + sin(2θ)σz

1σ
x
2

e−iθ[XY ]12σz
1e

iθ[XY ]12 = cos2(2θ)σz
1 + sin2(2θ)σz

2

+
1

2
sin(4θ)[σx

1σ
y
2 − σy

1σ
x
2 ] . (8)
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FIG. 1: (a) Switching on/off the parts Hs and Hint of the
Hamiltonian H = Hs + Hint gives rise to an effective time
evolution described by the stabilizer Hamiltonian Hstab [see
Eq. (7)] whose ground state is a cluster state. (b) Graph
representation of a one-dimensional 4-qubit (squares) cluster
state stabilized by the Ising interaction. (c) Two-dimensional
4 × 4 twisted cluster state stabilized by the XY interaction,
a universal resource for one-way quantum computation. The
dashed lines and Pauli operators in each direction illustrate
the twistedness of the state and the corresponding stabilizer
Hamiltonian.

For θ = π/4, these transformations increase the order of
the Pauli-matrix terms as σx

1 → −σz
1σ

y
2 and σy

1 → σz
1σ

x
2 .

For σz
1 one obtains σz

1 → σz
2 .

We now show how to construct a 2D stabilizer Hamil-
tonian. First we construct the 1D stabilizer Hamiltonian,
starting from

Hs = Ω(−σx
1 + σy

2 −
∑

i=3,N−2

σx
i + σy

N−1 − σx
N ) . (9)

In the specific case of six qubits in 1D, by applying Eq. (8)
to [XY ]12, [XY ]34, and [XY ]56, we obtain:

e−iS1Hse
iS1 = Ω(σz

1σ
y
2 + σz

2σ
x
1 + σz

3σ
y
4 + σz

4σ
y
3

+ σz
5σ

y
6 + σz

6σ
y
5 ) , (10)

where S1 = π
4

∑

l=1,3[XY ]{2l−1,2l}. Repeating this step
with S2 = π

4

∑

l=1,2[XY ]{2l,2l+1}, we get the 1D sta-

bilizer Hamiltonian H1D = e−iS2e−iS1Hse
iS1eiS2 that

reads explicitly

H1D = Ω(σz
1σ

z
2σ

x
3 + σz

3σ
x
1 + σz

2σ
z
4σ

x
5 + σz

5σ
z
3σ

x
2

+ σz
4σ

x
6 + σz

6σ
z
5σ

x
4 ) . (11)

This Hamiltonian is twisted in the sense of [5], i.e., the
site indices of the corresponding cluster state are ob-
tained by the permutation (2, 3)(4, 5) . . . (N − 2, N − 1)
(cyclic notation), for a chain of N qubits where N is even,
see Fig. 1(b,c).
The next step in the construction of the 2D stabi-

lizer Hamiltonian is to construct a ladder Hamiltonian
by bonding nearest-neighbor sites on adjacent chains a
and b, in which all the bondings between qubits ia and
ib are carried out simultaneously:

Hladder = Ω(−σz
1aσ

z
2aσ

z
b3σ

y
3a − σz

3aσ
z
1bσ

y
1a

− σz
2aσ

z
4aσ

z
5bσ

y
5a − σz

5aσ
z
3aσ

z
2bσ

y
2a − σz

4aσ
y
6aσ

z
6b

− σz
6aσ

z
5aσ

z
4bσ

y
4a) + (a ↔ b) . (12)
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A 2D stabilizer Hamiltonian is produced by connecting
the above two ladder Hamiltonians with the interaction
between the two ladders. For example, when we prepare
two ladders of length 4 such as in Fig. 1(c) and connect
them vertically, we obtain a 4×4 stabilizer Hamiltonian.
Heisenberg model.– For the Heisenberg interaction, we

can construct only a two-qubit stabilizer Hamiltonian
(note that the same is true for the XXZ interaction).
The basic relation is

e−iθ[XY Z]12σy
1e

iθ[XY Z]12 = cos2(2θ)σy
1

+sin2(2θ)σy
2 +

1

2
sin(4θ)(σx

1σ
y
2 − σy

1σ
x
2 ) . (13)

For the Ising and XY models, we can eliminate the
single Pauli matrix terms leaving the interaction terms
[see Eqs. (3) and (8)]. However, in Eq. (13), if we
set sin(2θ) = 0 or cos(2θ) = 0, we also eliminate the
σx
1σ

y
2 −σy

1σ
x
2 term. This is because the Heisenberg inter-

action contains terms in all three spatial directions [5]. In
the case of two qubits, we obtain H = Ω(σz

1σ
x
2 − σx

1σ
z
2)

from the initial Hamiltonian Hs = Ω(σy
1 − σy

2 ) by us-
ing Eq. (13) for θ = π/8. By applying a π-rotation,
we obtain the two-qubit stabilizer Hamiltonian H =
Ω(σz

1σ
x
2 + σx

1σ
z
2).

Manipulation of always-on Hamiltonian.– The scheme
discussed up to now relies on switching on/off the single-
qubit Hamiltonian H0 [see Eq. (2)] and the Ising or XY
interaction part Hint separately. There is a number of
schemes for switching on/off interactions between qubits
(see, e.g., [12–14]). However, they make the system more
complicated and require additional overhead.
Here, we solve this problem by demonstrating how

to extract H0 and Hint by using appropriate pulse se-
quences. We illustrate the idea using the standard NMR
Hamiltonian Hnmr =

∑

i εiσ
z
i +

∑

i<j Jσ
z
i σ

z
j which has

the property that [H0, Hint] = 0. In this case, H0 and
Hint can be switched on/off by using a simple pulse se-
quence. The interaction part HIsing can be extracted by
using two sandwiched π-pulses such as exp(iτHIsing) =

e−i(π/2)
∑

j
σy

j ei(τ/2)Hnmrei(π/2)
∑

j
σy

j ei(τ/2)Hnmr . On the
other hand, two steps are required to obtain H0.
Let us consider a 1D qubit chain. By apply-
ing a π-pulse about the x-axis (denoted by (π)x)
to all the qubits on the even sites, we ob-
tain e−i(π/2)

∑
i
σy

2iei(τ/2)Hnmrei(π/2)
∑

i
σy

2iei(τ/2)Hnmr =
eiτ

∑
i
Ωσz

2i−1 . Similarly, we obtain eiτ
∑

i
Ωσz

2i−1 by ap-
plying a (π)x-pulse to all the qubits on the odd sites.
Combining these two processes yields H0. This method
is easily generalized to 2D or 3D qubit arrays.
If [H0, Hint] 6= 0, this NMR method cannot be used.

Even in this case, H0 and Hint can be extracted sepa-
rately. The idea follows from average Hamiltonian theory
which is based on the Baker-Campbell-Hausdorff (BCH)
formula for the expansion of eAeB [9]. A stroboscopic
application of the Hamiltonian designed by a series of
short pulses can reduce or eliminate unwanted terms, if

Ωτ, Jτ ≪ 1. First we extract Hint by setting A = h0+h1

and B = −h0 +h1 in the BCH formula, where h0 ≡ H0τ
and h1 ≡ Hintτ . B is realized by applying a (π)y-pulse
on every qubit. From the BCH formula, we obtain

eAeB ≈ exp(2h1 + [h0, h1] +
1

3
[h0, [h0, h1]]) . (14)

The exponent corresponds to a third-order expansion in
Ωτ for Ωτ ≪ 1. If we repeat this operation n times like
eAeBeAeB · · · eAeB = (eAeB)n such that nΩτ = π/4,
the k-th term is of order [π/(4n)]k. Therefore, H0 is
cancelled, and we obtain only Hint in this order. When
we apply

eAeBeBeA ≈ exp(4h1 −
5

3
[h1, [h0, h1]] +

1

3
[h0, [h0, h1]]) ,

(15)
we can eliminate the second term in Eq. (14). In the
limit n → ∞ under the condition of nΩτ = π/4, H0 is
exactly eliminated. The extraction of H0 can be achieved
analogously. Moreover, as shown in [15], if the kth-order
term is the first nonvanishing correction, the decay rate
T2 of the qubit system is enlarged according to T ′

2 ∝
T2(k+1)!(T2/tc)

k as long as T2 > tc where tc is the time
required for each single step [A and B in Eq. (14)].

For theXY model, we have to switch off subsets ofHint

corresponding to S1 and S2, as discussed after Eq. (10).
This is equivalent to choosing A and B appropriately:
e.g., for the 1D chain, A = Hint = h1e + h1o and B =
h1e−h1o where h1e = Jτ([XY ]23+[XY ]45+[XY ]67+ ..)
and h1o = Jτ([XY ]12 + [XY ]34 + [XY ]56 + ..). That
means, B is generated by applying π pulses to qubits
2, 3, 6, 7, 10, 11, ....

Let us consider the 1D XY model with εi = 0 in
Eq. (2). The following operation can be used to obtain
H0. (i) Applying a (π)x-pulse to all the qubits on the
even sites changes the sign of

∑

i<j σ
y
i σ

y
j . (ii) By fur-

ther applying a (π)y-pulse to the same subset of qubits,
we obtain B/τ =

∑

i Ω(σ
x
2i−1 − σx

2i) −
∑

i<j J [XY ]ij .
As a result, we obtain Ω

∑

i σ
x
2i−1. Repeating the same

operations with the qubits on the odd sites, we obtain
Ω
∑

i σ
x
2i. For the Ising model, the process (i) is not re-

quired. For the Heisenberg model, the same procedure as
in the case of the XY model does not eliminate the term
J
∑

i<j σ
z
i σ

z
j . Thus, additional similar steps are required

to eliminate this term.

Robustness.– Since a practical realization of these
pulse sequences will not be free of imperfections,
we now analyze the effect of pulse duration errors
δ. A central quantity will be the cluster-state fi-
delity Fst(τ) = |〈Ψ00...0|Uτ (δ)|Ψ00...0〉|2 where Uτ (δ) =
e−iτHstab(π/4+δ/4). In the Ising case, Hstab(θ) is given by
Eq. (5), and an analogous equation in the XY case.

Let us consider the 1D Ising case. For θ = π/4 + δ/4,
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the first-order correction to Eq. (5) reads

H ′(δ) =
δ

2
Ω

[

σy
1 + σy

N +
∑

1<i<N

σy
i (σ

z
i−1 + σz

i+1)

]

. (16)

The effect of these terms is calculated from perturba-
tion theory using the expressions for σα

i |Ψ00..0〉, where
|Ψ00...0〉 is the initial cluster state and α = x, y, z [16].
The lowest-order expression of the cluster-state fidelity

reads Fst(τ) ≈
[

1 + Ω2τ2δ2(N − 1)/2
]−2

, and the correc-
tion scales with δ2 which is a signature of the robustness
of our method.
The simplest and most powerful method to further re-

duce the effect of pulse imperfections is the symmetriza-
tion of the pulse sequence frequently used in NMR [9].
We first note that Eq. (6) is equivalent to

ρ(0)
τ1Hint−→

τ
2
H0−→ −τ1Hint−→ −τ1Hint−→

τ
2
H0−→ τ1Hint−→ ρ(t) , (17)

where, as before, τ1 = π/(4J). The second half of
this pulse sequence results in a perturbation term that
has the opposite sign as compared to Eq. (16). Ap-
plying Eq. (14) leads to a cancellation of the first-
order perturbation term. If the original interval length
τ is divided into an even number n of subinter-
vals, τ = ntc, the perturbation term is replaced by
[Hstab, H

′]iτδ/(4n), and the fidelity Fn
sym is given by

Fn
sym ≈

[

1 + Ω4(2τ2/n)2δ2(N − 1)/2
]−2

. Hence, the fi-
delity is improved, Fn

sym > Fst, if n > 2Ωτ .
These perturbative results are complemented by ex-

act numerical calculations of Fst(τ) and the gate fidelity
Fg(τ) = 2−N |Tr U †

τ (0)Uτ ({δi})| for τ = π/(4Ω) in sys-
tems with up to 10 qubits. Here, δi, i = 1, . . . , N − 1
corresponds to the qubit pair (i, i+1). In both the Ising
and XY case, we averaged these fidelities over 2000 ran-
dom realizations of the δi taken from a Gaussian distribu-
tion with varying width σ. The results indicate that the
method is rather robust even outside the regime where σ
is much smaller than π/4 ≈ 0.78. For instance, the XY -
model calculation shows that Fst is bigger than 99% for
σ <∼ 0.04, while Fg can be bigger than 99% even for σ as
large as 0.07. The comparison between the two models
shows that the robustness in the XY case (see Fig. 2) is
somewhat better than in the Ising case.
Discussion and Conclusion.– The stabilizer formal-

ism relies on the multiplication of Pauli matrices and
is widely used in quantum information theory, e.g. in
quantum error-correcting codes (QECC) [17]. The dis-
tinguishing feature of the stabilizer Hamiltonians dis-
cussed here is that their ground states are directly re-
lated to the universal resource of measurement-based
quantum computation. In QECC, the stabilizer formal-
ism is used to express codewords, and the method illus-
trated in Eq. (6) can be used to obtain eigenvalues for
the syndrome measurements in the process of detecting
errors. Moreover, relations (3) and (8) can be used to

.

0 1 2 3 4 5 6 7 8 9 10
10

2
σ

0.90

0.95

1.00

Fst
.
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FIG. 2: Dependence of the cluster-state fidelity for τ =
π/(4Ω) on random errors in the pulse duration for one-
dimensional XY qubit arrays of length N = 6, 8, and 10.
The width of the Gaussian distribution is denoted by σ; the
error bars indicate the standard deviation.

effectively generate codewords in solid-state qubits. For
example, the three-qubit GHZ state (|000〉 ± |111〉)/

√
2,

which is used for the nine-qubit code, is effective gen-
erated by e±i(π/4)σx

1
σx
2
σx
3 |000〉, where ei(π/4)σ

x
1
σx
2
σx
3 =

ei(π/2)(σ
y

1
+σy

3
)e±i(π/4)σz

1
σx
2
σz
3 e−i(π/2)(σy

1
+σy

3
) is applied to

the three-qubit array. The five-qubit code [17] can also
be generated by using this method.

To conclude, we have proposed a method to pro-
duce 2D stabilizer Hamiltonians by using pulse sequences
starting from natural qubit-qubit interactions. The
ground states of these Hamiltonians are 2D cluster states
that are universal resources of measurement-based quan-
tum computation. We have shown that by specially tai-
lored pulse sequences, initially prepared cluster states can
be preserved with high fidelity. We have also shown how
this can be implemented in the case of always-on inter-
actions. Our work will facilitate implementations of one-
way quantum computing.
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