Departement of Physics, University of Basel

Dr. Rakesh P. Tiwari (rakesh.tiwari@unibas.ch)

Nanophysics - Fall 2016

Exercise 1

(1) Entangled Bell states

In the lecture we defined the Bell states as
$\left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$,
$\left|\beta_{01}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$,
$\left|\beta_{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$,
$\left|\beta_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$.
Imagine that one of the qubits of a Bell state is sent to Alice and the other one from the same Bell state is sent to Bob. If both Alice and Bob apply a Hadamard gate H to their qubit, show that two of the Bell states are interchanged, and two of the states are left unchanged by this transformation. Remember: $H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$

(2) Deutsch's Algorithm

Consider a binary classical function $f(x):\{0,1\} \rightarrow\{0,1\}$. A quantum circuit that implements Deutsch's Algorithm is shown below

where $U_{f}:|x, y\rangle \rightarrow|x, y+f(x)\rangle$. The input state $\left|\psi_{0}\right\rangle=|01\rangle$.
(a) Write down the state $\left|\psi_{1}\right\rangle$ obtained when the input state is sent through two Hadamard gates (H).
(b) Show that

$$
\left|\psi_{2}\right\rangle=\left\{\begin{array}{ll}
\pm\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) & \text { if } f(0)=f(1) \tag{1}\\
\pm\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) & \text { if } f(0) \neq f(1)
\end{array},\right.
$$

(c) Show that $\left|\psi_{3}\right\rangle= \pm|f(0) \oplus f(1)\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$, as mentioned in the lecture.

(3) Two qubit gate

The SWAP-gate is defined through the relation

$$
U_{\mathrm{SWAP}}\left|\psi_{1} \psi_{2}\right\rangle=\left|\psi_{2} \psi_{1}\right\rangle,
$$

where two qubits swap their states. This two-qubit gate is not by itself sufficient for universal quantum computation, but if the gate is pulsed for half-a-period, the resulting 'square-root-of-SWAP' (or $\sqrt{\mathrm{SWAP}} \equiv U_{\text {SWAP }}^{1 / 2}$) becomes useful since one can obtain an XOR-gate (up to some single-qubit rotations).
(a) Show that the matrix form of the $U_{\text {SWAP }}^{1 / 2}$ takes the following form in the computational basis (|00〉, |01 $,|10\rangle,|11\rangle)$:

$$
U_{\mathrm{SWAP}}^{1 / 2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2}(1+i) & \frac{1}{2}(1-i) & 0 \\
0 & \frac{1}{2}(1-i) & \frac{1}{2}(1+i) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(b) Using the state $|\psi\rangle=|10\rangle$ as an input of $\sqrt{\text { SWAP }}$ gate, what is the output state? Are the input and/or output states entangled?
(c) Repeat (b) using states $|\psi\rangle=|00\rangle,|\psi\rangle=|01\rangle$ and $|\psi\rangle=|11\rangle$ as input states.

