Quantum computing and quantum communication

Rakesh P. Tiwari

rakesh.tiwari@unibas.ch

November 30, 2016

What will we learn ?

- elements of quantum information
 - qubits
 - superposition and entanglement
 - 1- and 2-qubit gates
 - no-cloning theorem
 - Deutsch algorithm
- error correction, encryption, teleportation
- "hardware" for quantum computers

references:

N.D. Mermin, Quantum computer science, Cambridge University Press

M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press

Lecture notes by C. Bruder

What are quantum bits ?

- A classical computer manipulates bits: possible states 0 or 1
- A quantum computer manipulates qubits ≡ quantum 2-level systems: possible states (α|0⟩ + β|1⟩)
- α , β are complex numbers with $|\alpha|^2 + |\beta|^2 = 1$.

Reminder

- operators, e.g., Hamiltonian operator, act on states
- Schrödinger equation: $H|\psi\rangle = E|\psi\rangle$
- states can be written as linear combination of basis states $|\psi\rangle = \sum_n \alpha_n |n\rangle$
- example: spin $\frac{1}{2}$; each state may be expressed as linear combination of $|\uparrow\rangle$ and $|\downarrow\rangle$

Examples of 2-level systems

- all 2-level systems are mathematically equivalent!
- example: spin $\frac{1}{2}$
- physical state $|\uparrow\rangle \rightarrow$ logical state $|0\rangle$
- physical state $|\downarrow\rangle \rightarrow$ logical state $|1\rangle$
- In the basis of eigenstates of $\hat{\sigma}_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- All operators acting on one qubit are 2×2 matrices

2-qubit states

- 2 qubits \Rightarrow 4 basis states
- $|0\rangle_1|0\rangle_2$
- $|0
 angle_1|1
 angle_2$
- $|1\rangle_1|0\rangle_2$
- $|1\rangle_1|1\rangle_2$
- we omit the indices 1,2 and write $|00\rangle,\,|01\rangle,\,|10\rangle,\,|11\rangle$
- similarly, we define 3-qubit states, 4-qubit states, ... N-qubit states

Entanglement I

- Apart from the possibility to form superpositions of states, there is another crucial additional resource in a quantum computer: entanglement
- Classical 2-bit state can be 'factorized'
- Example: state (11)
- Bit 1 is in state "1", bit 2 is in state "1"

Entanglement II

- In contrast, the entangled 2-qubit state $\left\lfloor \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \right\rfloor$ cannot be factorized
- What happens if we measure qubit 1 and qubit 2?
- Corresponds to measuring the operator $\hat{\sigma}_z$

Entanglement III

- EITHER we get 0 for qubit 1 and 0 for qubit 2 (probability $\frac{1}{2}$)
- OR we get 1 for qubit 1 and 1 for qubit 2 (probability $\frac{1}{2}$)
- But never any 'mixed' result (regardless in which direction we measure)
- This explains the expression 'cannot be factorized'

Superposition vs. entanglement

- $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ superposition of two 1-qubit states
- + $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ entangled superposition of two 2-qubit states
- $\frac{1}{2}(|00\rangle + |10\rangle + |01\rangle + |11\rangle)$
- superposition?
- entangled state ?
- = $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ not-entangled superposition of four 2-qubit states

1-qubit gates

- Example: NOT gate $\hat{\sigma}_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- $\hat{\sigma}_{x}|0
 angle=\hat{\sigma}_{x}\left(egin{array}{c}1\\0\end{array}
 ight)=\left(egin{array}{c}0\\1\end{array}
 ight)=|1
 angle$
- And vice versa $\Rightarrow \hat{\sigma}_x$ is the NOT gate
- General 1-qubit gate: unitary 2×2 matrix
- Reminder: A unitary means $AA^{\dagger} = 1$

Hadamard gate

•
$$H = \frac{1}{\sqrt{2}} (\hat{\sigma}_x + \hat{\sigma}_z) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

•
$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

•
$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

イロト イヨト イヨト イヨ

2-qubit gates: CNOT

- 2-qubit gates, e.g., controlled-NOT
- Basis $|00\rangle, |01\rangle, |10\rangle, |11\rangle$

• CNOT =
$$\begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \\ & & 1 \end{bmatrix}$$

- second qubit is flipped if the first one (control qubit) is 1
- $\bullet \hspace{0.1 cm} |00\rangle \rightarrow |00\rangle; \hspace{0.1 cm} |01\rangle \rightarrow |01\rangle; \hspace{0.1 cm} |10\rangle \rightarrow |11\rangle; \hspace{0.1 cm} |11\rangle \rightarrow |10\rangle$

Rakesh P. Tiwari

Toffoli gate

• 3-qubit gate, basis $|000\rangle$, $|001\rangle$, $|010\rangle$, $|011\rangle$, $|100\rangle$, $|101\rangle$, $|110\rangle$, $|111\rangle$

• Third bit (target) is flipped if the first two (control) bits are 1

- (a, b, c) \rightarrow (a,b,c \oplus ab) \rightarrow (a,b,c)
- Reversible gate, its inverse is itself
- Simulates classical NAND gate

Can we simulate classical logic circuit using quantum circuit ?

- Of course (world around us is quantum !!)
- All unitary quantum logic gates are inherently *reversible* [each output corresponds to unique input]
- Classical logic gates, such as NAND is inherently irreversible
- All classical logic gates can be assembled from only binary NAND gates
- → using Toffoli gate any classical algorithm can be executed on a quantum computer
- Universal quantum computer needs the CNOT, *H*, phase gate, $\pi/8$ gate

No-cloning theorem

- Copying a state is impossible (no-cloning theorem); however, recreating a state in one location is possible at the expense of destroying it in another (teleportation)
- Assuming there is a "cloning operator" A: $A|\alpha\rangle|0\rangle = |\alpha\rangle|\alpha\rangle$ for any $|\alpha\rangle$
- Now take $|\alpha\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- Hence $A|\alpha\rangle|0\rangle = \frac{1}{2}(|0\rangle + |1\rangle)(|0\rangle + |1\rangle)$
- On the other hand, because of linearity, $A\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle = \frac{1}{\sqrt{2}}(A|0\rangle|0\rangle + A|1\rangle|0\rangle)$
- $A\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle)$
- CONTRADICTION!

Examples: Bell states - circuit to create the Bell states

- $|\beta_{00}
 angle = rac{1}{\sqrt{2}}(|00
 angle + |11
 angle)$
- $|eta_{01}
 angle=rac{1}{\sqrt{2}}(|01
 angle+|10
 angle)$
- $|eta_{10}
 angle=rac{1}{\sqrt{2}}(|00
 angle-|11
 angle)$
- $|eta_{11}
 angle=rac{1}{\sqrt{2}}(|01
 angle-|10
 angle)$
- general expression:

$$\left|egin{array}{c} |eta_{xy}
angle = rac{1}{\sqrt{2}}(|0y
angle + (-1)^x|1ar{y}
angle)
ight)$$

Examples: Bell states - circuit to create the Bell

• 1: input state
$$|xy\rangle = |00\rangle$$

• 2:
$$\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$$
 (Hadamard gate $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$)

• 3:
$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \beta_{00}$$

Γ .

- T

Deutsch's algorithm I

- $f(x): \{0,1\} \rightarrow \{0,1\}$ classical function
- $U_f: |x, y\rangle \rightarrow |x, y + f(x)\rangle$ quantum circuit that implements y + f(x)

• input
$$x = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
, $y = |0\rangle$ leads to $[\frac{|0,f(0)\rangle + |1,f(1)\rangle}{\sqrt{2}}]$

- \Rightarrow one "application" of f results in both f(0), f(1)!
- However...measurement of the final state gives either |0, f(0)
 angle or |1, f(1)
 angle
- so, quantum parallelism does not help ...?

Deutsch's algorithm II

- results in $|f(0) \oplus f(1)\rangle [\frac{|0\rangle |1\rangle}{\sqrt{2}}]$
- ⇒ global property of *f*, namely *f*(0) ⊕ *f*(1), using only one evaluation of *f*(*x*)!
- impossible on a classical computer

The power of quantum computing

- Computation = unitary time evolution of a system of qubits generated by a suitable Hamiltonian
- Hamiltonian acts on superposition of entangled input states
 ⇒ high degree of parallelism
- Quantum computer can factorize N-digit numbers in a time that grows polynomially with N using Shor algorithm
- Classical computer: presumably exponentially!