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What will we learn ?
• elements of quantum information

• qubits
• superposition and entanglement
• 1- and 2-qubit gates
• no-cloning theorem
• Deutsch algorithm

• error correction, encryption, teleportation

• “hardware” for quantum computers

references:

N.D. Mermin, Quantum computer science, Cambridge University Press

M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press

Lecture notes by C. Bruder
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What are quantum bits ?

• A classical computer manipulates bits: possible states 0 or 1

• A quantum computer manipulates qubits ≡ quantum 2-level
systems: possible states (α|0〉+ β|1〉)

• α, β are complex numbers with |α|2 + |β|2 = 1.
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Reminder

• operators, e.g., Hamiltonian operator, act on states

• Schrödinger equation: H|ψ〉 = E |ψ〉
• states can be written as linear combination of basis states
|ψ〉 =

∑
n αn|n〉

• example: spin 1
2 ; each state may be expressed as linear

combination of | ↑〉 and | ↓〉
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Examples of 2-level systems
• all 2-level systems are mathematically equivalent!

• example: spin 1
2

• physical state | ↑〉 → logical state |0〉
• physical state | ↓〉 → logical state |1〉

• In the basis of eigenstates of σ̂z =

[
1 0
0 −1

]
,

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
• All operators acting on one qubit are 2× 2 matrices
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2-qubit states

• 2 qubits ⇒ 4 basis states

• |0〉1|0〉2
• |0〉1|1〉2
• |1〉1|0〉2
• |1〉1|1〉2
• we omit the indices 1,2 and write |00〉, |01〉, |10〉, |11〉
• similarly, we define 3-qubit states, 4-qubit states, ... N-qubit

states
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Entanglement I

• Apart from the possibility to form superpositions of states,
there is another crucial additional resource in a quantum
computer: entanglement

• Classical 2-bit state can be ‘factorized’

• Example: state (11)

• Bit 1 is in state “1”, bit 2 is in state “1”
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Entanglement II

• In contrast, the entangled 2-qubit state
[

1√
2

(|00〉+ |11〉)
]

cannot be factorized

• What happens if we measure qubit 1 and qubit 2?

• Corresponds to measuring the operator σ̂z
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Entanglement III

• EITHER we get 0 for qubit 1 and 0 for qubit 2 (probability 1
2)

• OR we get 1 for qubit 1 and 1 for qubit 2 (probability 1
2)

• But never any ‘mixed’ result (regardless in which direction we
measure)

• This explains the expression ‘cannot be factorized’
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Superposition vs. entanglement

• 1√
2

(|0〉+ |1〉) superposition of two 1-qubit states

• 1√
2

(|00〉+ |11〉) entangled superposition of two 2-qubit states

• 1
2(|00〉+ |10〉+ |01〉+ |11〉)

• superposition?

• entangled state ?

• = 1√
2

(|0〉+ |1〉) 1√
2

(|0〉+ |1〉) not-entangled superposition of

four 2-qubit states
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1-qubit gates

• Example: NOT gate σ̂x =

(
0 1
1 0

)
• σ̂x |0〉 = σ̂x

(
1
0

)
=

(
0
1

)
= |1〉

• And vice versa
⇒ σ̂x is the NOT gate

• General 1-qubit gate: unitary 2× 2 matrix

• Reminder: A unitary means AA† = 1
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Hadamard gate

• H = 1√
2

(σ̂x + σ̂z) = 1√
2

[
1 1
1 −1

]
• H|0〉 = 1√

2
(|0〉+ |1〉)

• H|1〉 = 1√
2

(|0〉 − |1〉)
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2-qubit gates: CNOT

• 2-qubit gates, e.g., controlled-NOT

• Basis |00〉, |01〉, |10〉, |11〉

• CNOT =


1

1
1

1


• second qubit is flipped if the first one (control qubit) is 1

• |00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉
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control qubit

CNOT α|00> + β|11>

|0>

α|0> + β|1>

•


1

1
1

1



α
0
β
0

 =


α
0
0
β



Quantum computing and quantum communication Rakesh P. Tiwari



Toffoli gate

• 3-qubit gate, basis |000〉, |001〉, |010〉, |011〉, |100〉, |101〉,
|110〉, |111〉

• Toffoli := T =



1
1

1
1

1
1

1
1


• Third bit (target) is flipped if the first two (control) bits are 1
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Toffoli gate
a

1+ab  (NAND!)

a

bb

1

input output

a b c a′ b′ c′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

• (a, b, c)→ (a,b,c⊕ab) → (a,b,c)

• Reversible gate, its inverse is itself

• Simulates classical NAND gate
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Can we simulate classical logic circuit using
quantum circuit ?

• Of course (world around us is quantum !!)

• All unitary quantum logic gates are inherently reversible [each
output corresponds to unique input]

• Classical logic gates, such as NAND is inherently irreversible

• All classical logic gates can be assembled from only binary
NAND gates

• ⇒ using Toffoli gate any classical algorithm can be executed
on a quantum computer

• Universal quantum computer needs the CNOT, H, phase
gate, π/8 gate
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No-cloning theorem

• Copying a state is impossible (no-cloning theorem); however,
recreating a state in one location is possible at the expense of
destroying it in another (teleportation)

• Assuming there is a “cloning operator” A: A|α〉|0〉 = |α〉|α〉
for any |α〉

• Now take |α〉 = 1√
2

(|0〉+ |1〉)

• Hence A|α〉|0〉 = 1
2(|0〉+ |1〉)(|0〉+ |1〉)

• On the other hand, because of linearity,
A 1√

2
(|0〉+ |1〉)|0〉 = 1√

2
(A|0〉|0〉+ A|1〉|0〉)

• A 1√
2

(|0〉+ |1〉)|0〉 = 1√
2

(|0〉|0〉+ |1〉|1〉)
• CONTRADICTION!
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Examples: Bell states - circuit to create the Bell
states
• |β00〉 = 1√

2
(|00〉+ |11〉)

• |β01〉 = 1√
2

(|01〉+ |10〉)

• |β10〉 = 1√
2

(|00〉 − |11〉)

• |β11〉 = 1√
2

(|01〉 − |10〉)

• general expression: |βxy 〉 = 1√
2

(|0y〉+ (−1)x |1ȳ〉)
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Examples: Bell states - circuit to create the Bell

states

|β  >xy

Hx

y

CNOT

321

• 1: input state |xy〉 = |00〉

• 2: 1√
2

(|00〉+ |10〉) (Hadamard gate H = 1√
2

[
1 1
1 −1

]
)

• 3: 1√
2

(|00〉+ |11〉) = β00
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Deutsch’s algorithm I

• f (x) : {0, 1} → {0, 1} classical function

• Uf : |x , y〉 → |x , y + f (x)〉 quantum circuit that implements
y + f (x)

• input x = 1√
2

(|0〉+ |1〉), y = |0〉 leads to [ |0,f (0)〉+|1,f (1)〉√
2

]

• ⇒ one “application” of f results in both f (0), f (1)!

• However...measurement of the final state gives either |0, f (0)〉
or |1, f (1)〉

• so, quantum parallelism does not help ...?
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Deutsch’s algorithm II

f

H

H

H|0>

|1>

x

y

x

y+f(x)

U

• results in |f (0)⊕ f (1)〉[ |0〉−|1〉√
2

]

• ⇒ global property of f , namely f (0)⊕ f (1), using only one
evaluation of f (x)!

• impossible on a classical computer
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The power of quantum computing

• Computation = unitary time evolution of a system of qubits
generated by a suitable Hamiltonian

• Hamiltonian acts on superposition of entangled input states
⇒ high degree of parallelism

• Quantum computer can factorize N-digit numbers in a time
that grows polynomially with N using Shor algorithm

• Classical computer: presumably exponentially!
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