Quantum computing and quantum communication

Rakesh P. Tiwari
rakesh.tiwari@unibas.ch

November 30, 2016

What will we learn ?

- elements of quantum information
- qubits
- superposition and entanglement
- 1- and 2-qubit gates
- no-cloning theorem
- Deutsch algorithm
- error correction, encryption, teleportation
- "hardware" for quantum computers
references:
N.D. Mermin, Quantum computer science, Cambridge University Press
M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press

Lecture notes by C. Bruder

What are quantum bits ?

- A classical computer manipulates bits: possible states 0 or 1
- A quantum computer manipulates qubits \equiv quantum 2-level systems: possible states $(\alpha|0\rangle+\beta|1\rangle)$
- α, β are complex numbers with $|\alpha|^{2}+|\beta|^{2}=1$.

Reminder

- operators, e.g., Hamiltonian operator, act on states
- Schrödinger equation: $H|\psi\rangle=E|\psi\rangle$
- states can be written as linear combination of basis states $|\psi\rangle=\sum_{n} \alpha_{n}|n\rangle$
- example: spin $\frac{1}{2}$; each state may be expressed as linear combination of $|\uparrow\rangle$ and $|\downarrow\rangle$

Examples of 2-level systems

- all 2-level systems are mathematically equivalent!
- example: spin $\frac{1}{2}$
- physical state $|\uparrow\rangle \rightarrow$ logical state $|0\rangle$
- physical state $|\downarrow\rangle \rightarrow$ logical state $|1\rangle$
- In the basis of eigenstates of $\hat{\sigma}_{z}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$,

$$
|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1}
$$

- All operators acting on one qubit are 2×2 matrices

2-qubit states

- 2 qubits $\Rightarrow 4$ basis states
- $|0\rangle_{1}|0\rangle_{2}$
- $|0\rangle_{1}|1\rangle_{2}$
- $|1\rangle_{1}|0\rangle_{2}$
- $|1\rangle_{1}|1\rangle_{2}$
- we omit the indices 1,2 and write $|00\rangle,|01\rangle,|10\rangle,|11\rangle$
- similarly, we define 3-qubit states, 4-qubit states, ... N-qubit states

Entanglement I

- Apart from the possibility to form superpositions of states, there is another crucial additional resource in a quantum computer: entanglement
- Classical 2-bit state can be 'factorized'
- Example: state (11)
- Bit 1 is in state " 1 ", bit 2 is in state " 1 "

Entanglement II

- In contrast, the entangled 2-qubit state $\left[\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right]$ cannot be factorized
- What happens if we measure qubit 1 and qubit 2?
- Corresponds to measuring the operator $\hat{\sigma}_{z}$

Entanglement III

- EITHER we get 0 for qubit 1 and 0 for qubit 2 (probability $\frac{1}{2}$)
- OR we get 1 for qubit 1 and 1 for qubit 2 (probability $\frac{1}{2}$)
- But never any 'mixed' result (regardless in which direction we measure)
- This explains the expression 'cannot be factorized'

Superposition vs. entanglement

- $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ superposition of two 1 -qubit states
- $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ entangled superposition of two 2-qubit states
- $\frac{1}{2}(|00\rangle+|10\rangle+|01\rangle+|11\rangle)$
- superposition?
- entangled state ?
- $=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ not-entangled superposition of four 2-qubit states

1-qubit gates

- Example: NOT gate $\hat{\sigma}_{X}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $\hat{\sigma}_{x}|0\rangle=\hat{\sigma}_{x}\binom{1}{0}=\binom{0}{1}=|1\rangle$
- And vice versa
$\Rightarrow \hat{\sigma}_{x}$ is the NOT gate
- General 1 -qubit gate: unitary 2×2 matrix
- Reminder: A unitary means $A A^{\dagger}=1$

Hadamard gate

- $H=\frac{1}{\sqrt{2}}\left(\hat{\sigma}_{x}+\hat{\sigma}_{z}\right)=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
- $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
- $H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

2-qubit gates: CNOT

- 2-qubit gates, e.g., controlled-NOT
- Basis $|00\rangle,|01\rangle,|10\rangle,|11\rangle$
- $\mathrm{CNOT}=\left[\begin{array}{llll}1 & & & \\ & 1 & & \\ & & & 1\end{array}\right]$
- second qubit is flipped if the first one (control qubit) is 1
- $|00\rangle \rightarrow|00\rangle ;|01\rangle \rightarrow|01\rangle ;|10\rangle \rightarrow|11\rangle ;|11\rangle \rightarrow|10\rangle$
control qubit $\alpha|0>+\beta| 1>$

CNOT

$\alpha|00>+\beta| 11>$

Toffoli gate

－3－qubit gate，basis｜000〉，｜001〉，｜010〉，｜011〉，｜100〉，｜101〉， ｜110〉，｜111＞
－Toffoli $:=\mathcal{T}=\left[\begin{array}{ccccccc}1 & & & & & & \\ & 1 & & & & & \\ & & 1 & & & & \\ & & & 1 & & & \\ & & & & 1 & & \\ & & & & & 1 & \\ & & & & & & 1 \\ & & & & & & 1\end{array}\right]$
－Third bit（target）is flipped if the first two（control）bits are 1

input			output		
a	b	c	a^{\prime}	b^{\prime}	c^{\prime}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

- $(a, b, c) \rightarrow(a, b, c \oplus a b) \rightarrow(a, b, c)$
- Reversible gate, its inverse is itself
- Simulates classical NAND gate

Can we simulate classical logic circuit using quantum circuit?

- Of course (world around us is quantum !!)
- All unitary quantum logic gates are inherently reversible [each output corresponds to unique input]
- Classical logic gates, such as NAND is inherently irreversible
- All classical logic gates can be assembled from only binary NAND gates
- \Rightarrow using Toffoli gate any classical algorithm can be executed on a quantum computer
- Universal quantum computer needs the CNOT, H, phase gate, $\pi / 8$ gate

No-cloning theorem

- Copying a state is impossible (no-cloning theorem); however, recreating a state in one location is possible at the expense of destroying it in another (teleportation)
- Assuming there is a "cloning operator" $A: A|\alpha\rangle|0\rangle=|\alpha\rangle|\alpha\rangle$ for any $|\alpha\rangle$
- Now take $|\alpha\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
- Hence $A|\alpha\rangle|0\rangle=\frac{1}{2}(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)$
- On the other hand, because of linearity, $A \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|0\rangle=\frac{1}{\sqrt{2}}(A|0\rangle|0\rangle+A|1\rangle|0\rangle)$
- $A \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)$
- CONTRADICTION!

Examples: Bell states - circuit to create the Bell states

- $\left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- $\left|\beta_{01}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$
- $\left|\beta_{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$
- $\left|\beta_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$
- general expression: $\left|\beta_{x y}\right\rangle=\frac{1}{\sqrt{2}}\left(|0 y\rangle+(-1)^{\times}|1 \bar{y}\rangle\right)$

Examples: Bell states - circuit to create the Bell

- 1: input state $|x y\rangle=|00\rangle$
- 2: $\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)$ (Hadamard gate $H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$)
- 3: $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\beta_{00}$

Deutsch's algorithm I

- $f(x):\{0,1\} \rightarrow\{0,1\}$ classical function
- $U_{f}:|x, y\rangle \rightarrow|x, y+f(x)\rangle$ quantum circuit that implements $y+f(x)$
- input $x=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), y=|0\rangle$ leads to $\left[\frac{|0, f(0)\rangle+|1, f(1)\rangle}{\sqrt{2}}\right]$
- \Rightarrow one "application" of f results in both $f(0), f(1)$!
- However...measurement of the final state gives either $|0, f(0)\rangle$ or $|1, f(1)\rangle$
- so, quantum parallelism does not help ...?

Deutsch's algorithm II

- results in $|f(0) \oplus f(1)\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]$
- \Rightarrow global property of f, namely $f(0) \oplus f(1)$, using only one evaluation of $f(x)$!
- impossible on a classical computer

The power of quantum computing

- Computation $=$ unitary time evolution of a system of qubits generated by a suitable Hamiltonian
- Hamiltonian acts on superposition of entangled input states \Rightarrow high degree of parallelism
- Quantum computer can factorize N -digit numbers in a time that grows polynomially with N using Shor algorithm
- Classical computer: presumably exponentially!

