Quantum computing and quantum communication

Rakesh P. Tiwari

rakesh.tiwari@unibas.ch

December 7, 2016

What will we learn ?

- elements of quantum information
 - qubits
 - superposition and entanglement
 - 1- and 2-qubit gates
 - no-cloning theorem
 - Deutsch algorithm
- error correction, encryption, teleportation
- "hardware" for quantum computers

references:

N.D. Mermin, Quantum computer science, Cambridge University Press

M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press

Lecture notes by C. Bruder

Big problem

- Unitary time evolution of a quantum computer has to be phase-coherent
- But a system of 100's or 1000's of qubits is coupled to its environment ⇒ phase-breaking processes
- Way out: quantum error correction! (Shor)
- Introduce redundancy \Rightarrow protection from phase-breaking errors.
- Operation of a quantum computer possible if $rac{ au_{switch}}{ au_{\phi}} \leq 10^{-4}$
- τ_{switch} : time to do a 1-qubit operation
- τ_{ϕ} : phase-breaking time

Classical error correction I

- Bit flip is the most general classical single-bit error $(0 \leftrightarrow 1)$
- Probability of 1-bit error: p per unit time
- A bit is corrupted after $\mathcal{O}(1/p)$ steps
- To get around add redundancy by the following encoding: $0 \rightarrow 00$ and $1 \rightarrow 11$
- The strings 00 and 11, both have even parity
- If we detect an odd party string, an error has occurred
- How to correct ?

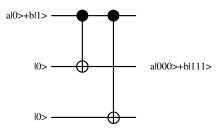
Classical error correction II

- Increase redundancy: 0 \rightarrow 000 and 1 \rightarrow 111
- 1-bit errors can be corrected by 'majority voting'
- What if two errors occur ? error correction works incorrectly
- What if three errors occur ? error undetectable
- Probability of single bit error is 3p with a redundancy of three
- probability of 2-bit and 3-bit error is $3p^2$ and p^3 respectively
- If $3p^2 + p^3 < p$ then error correction is worth doing, choose $p \ll 1$

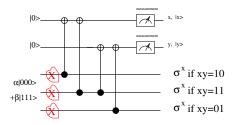
Quantum error correction I

- No cloning theorem \rightarrow cannot increase redundancy
- Finding errors requires measurements destroying quantum information
- Surprisingly, we can still correct errors
- Consider bit flip error
- Corresponds to bit flip gate $\hat{\sigma}_x$
- Embed single qubit state in a state of three qubits, $\alpha |0\rangle + \beta |1\rangle$ is encoded as $|\psi\rangle = \alpha |000\rangle + \beta |111\rangle$
- We have NOT copied $\alpha |\mathbf{0}\rangle + \beta |1\rangle$, doesn't violate no cloning theorem

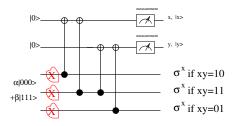
Quantum error correction II



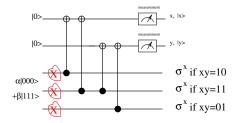
- Using CNOT: $\alpha |0\rangle + \beta |1\rangle \Rightarrow \alpha |000\rangle + \beta |111\rangle$
- Single bit-flip error can result in $\alpha |100\rangle + \beta |011\rangle$ or $\alpha |010\rangle + \beta |101\rangle$ or $\alpha |001\rangle + \beta |110\rangle$
- If we knew the parities of qubits 1 and 2, and qubits 2 and 3, we know which error (if any) has occurred
- How to correct ?



- Alice sends $\alpha |000
 angle + \beta |111
 angle$
- Bob receives $\alpha |000\rangle + \beta |111\rangle$ with probability $(1-p)^3$
- Bob receives lpha|100
 angle+eta|011
 angle with probability $p(1-p)^2$
- Bob receives lpha|010
 angle+eta|101
 angle with probability $p(1-p)^2$
- Bob receives $\alpha |001\rangle + \beta |110\rangle$ with probability $p(1-p)^2$
- Bob receives $\alpha |110\rangle + \beta |001\rangle$ with probability $p^2(1-p)$
- Bob receives $\alpha |101\rangle + \beta |010\rangle$ with probability $p^2(1-p)$
- Bob receives $\alpha|011
 angle+\beta|100
 angle$ with probability $p^2(1-p)$
- Bob receives lpha|111
 angle+eta|000
 angle with probability p^3



- After Bob's CNOTs
- Bob gets $(\alpha|000
 angle+\beta|111
 angle)|00
 angle$ with probability $(1-p)^3$
- Bob gets $(\alpha|100
 angle+\beta|011
 angle)|10
 angle$ with probability $p(1-p)^2$
- Bob gets (lpha|010
 angle+eta|101
 angle)|11
 angle with probability $p(1-p)^2$
- Bob gets $(\alpha|001
 angle+\beta|110
 angle)|01
 angle$ with probability $p(1-p)^2$
- Bob gets $(\alpha|110
 angle+\beta|001
 angle)|01
 angle$ with probability $p^2(1-p)$
- Bob gets $(\alpha|101
 angle+\beta|010
 angle)|11
 angle$ with probability $p^2(1-p)$
- Bob gets (lpha|011
 angle+eta|100
 angle)|10
 angle with probability $p^2(1-p)$
- Bob gets $(\alpha|111
 angle+\beta|000
 angle)|00
 angle$ with probability p^3



- Bob flips one of the qubits depending on the values of x and y
- $P_{\textit{fail}} = 3p^2 2p^3 \sim \mathcal{O}(p^2)$: add last four
- If nothing is done, $P_{fail} \sim \mathcal{O}(p)$, single bit flip error
- With just three qubits, we reduced the error probability by a factor of $\frac{1}{3p}\sim 300$ for p=0.001
- Suppression is more powerful with more qubits

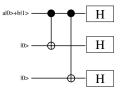
Phase flip error

- Bit flip error is only one kind of possible error
- Phase flip error: $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |0\rangle \beta |1\rangle$
- No classical equivalent
- How to correct phase flip errors ?
- Turn phase flip channel into bit flip channel !

•
$$|+
angle\equiv rac{|0
angle+|1
angle}{\sqrt{2}}$$
, $|-
angle\equiv rac{|0
angle-|1
angle}{\sqrt{2}}$

• In this basis phase flip acts like bit flip

• In
$$|+\rangle$$
 and $|-\rangle$ basis the state is $\frac{1}{\sqrt{2}} \begin{bmatrix} \alpha + \beta \\ \alpha - \beta \end{bmatrix}$



- $\alpha |0\rangle + \beta |1\rangle \Rightarrow \alpha |+++\rangle + \beta |---\rangle$
- Remaining procedure same as before
- Combination of the phase flip and the bit flip code can protect against arbitrary errors: Shor Code

Classical cryptography

- Alice wants to send a secret message to Bob ... both have exchanged an encryption key beforehand
- 0 1 0 0 1 1 0 0 1 0 0 0 message
- 1 1 0 1 0 1 1 1 0 1 0 0 encryption key
- 1 0 0 1 1 0 1 1 1 1 0 0 sum = encrypted message
- Message transmitted to Bob over public channel
- 1 0 0 1 1 0 1 1 1 1 0 0 encrypted message
- 1 1 0 1 0 1 1 1 0 1 0 0 encryption key
- 0 1 0 0 1 1 0 0 1 0 0 0 difference = message
- Provably secure if the key is as long as the message

Problem: key distribution

- If Eve (eavesdropper) gets hold of the key, she may listen to the encrypted message
- She can do it without Bob's knowledge of the interception of the message
- However, quantum mechanics can be used to distribute or create a key, giving no chance to Eve
- EPR protocol: Alice produces a number of 2-qubit states $|\beta_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ and sends one qubit of the pair to Bob
- Both make measurements on their half of the pair (in the same basis), and the results are random but identical on both sides ⇒ generation of a key

Eavesdropping

- If Eve knew the basis she could also get the key
- If Eve secretly tries to read the key during transmission, she will change the qubit state
- Alice and Bob can check this by selecting a random subset of the pairs, and test if they violate Bell's inequality
- Eve cannot get any information from the qubits transmitted from Alice to Bob without disturbing their state
- This is the heart of quantum cryptography