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What will we learn ?
• elements of quantum information

• qubits
• superposition and entanglement
• 1- and 2-qubit gates
• no-cloning theorem
• Deutsch algorithm

• error correction, encryption, teleportation

• “hardware” for quantum computers

references:

N.D. Mermin, Quantum computer science, Cambridge University Press

M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press

Lecture notes by C. Bruder
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Big problem
• Unitary time evolution of a quantum computer has to be

phase-coherent

• But a system of 100’s or 1000’s of qubits is coupled to its
environment ⇒ phase-breaking processes

• Way out: quantum error correction! (Shor)

• Introduce redundancy ⇒ protection from phase-breaking
errors.

• Operation of a quantum computer possible if τswitch
τφ
≤ 10−4

• τswitch: time to do a 1-qubit operation

• τφ: phase-breaking time
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Classical error correction I

• Bit flip is the most general classical single-bit error (0↔1)

• Probability of 1-bit error: p per unit time

• A bit is corrupted after O(1/p) steps

• To get around add redundancy by the following encoding:
0→ 00 and 1→ 11

• The strings 00 and 11, both have even parity

• If we detect an odd party string, an error has occurred

• How to correct ?
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Classical error correction II

• Increase redundancy: 0→ 000 and 1→ 111

• 1-bit errors can be corrected by ‘majority voting’

• What if two errors occur ? error correction works incorrectly

• What if three errors occur ? error undetectable

• Probability of single bit error is 3p with a redundancy of three

• probability of 2-bit and 3-bit error is 3p2 and p3 respectively

• If 3p2 + p3 < p then error correction is worth doing, choose
p � 1
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Quantum error correction I

• No cloning theorem → cannot increase redundancy

• Finding errors requires measurements destroying quantum
information

• Surprisingly, we can still correct errors

• Consider bit flip error

• Corresponds to bit flip gate σ̂x

• Embed single qubit state in a state of three qubits,
α|0〉+ β|1〉 is encoded as |ψ〉 = α|000〉+ β|111〉

• We have NOT copied α|0〉+ β|1〉, doesn’t violate no cloning
theorem
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Quantum error correction II

a|000>+b|111>|0>

|0>

a|0>+b|1>

• Using CNOT: α|0〉+ β|1〉 ⇒ α|000〉+ β|111〉
• Single bit-flip error can result in α|100〉+ β|011〉 or
α|010〉+ β|101〉 or α|001〉+ β|110〉

• If we knew the parities of qubits 1 and 2, and qubits 2 and 3,
we know which error (if any) has occurred

• How to correct ?
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• Alice sends α|000〉+ β|111〉
• Bob receives α|000〉+ β|111〉 with probability (1− p)3

• Bob receives α|100〉+ β|011〉 with probability p(1− p)2

• Bob receives α|010〉+ β|101〉 with probability p(1− p)2

• Bob receives α|001〉+ β|110〉 with probability p(1− p)2

• Bob receives α|110〉+ β|001〉 with probability p2(1− p)

• Bob receives α|101〉+ β|010〉 with probability p2(1− p)

• Bob receives α|011〉+ β|100〉 with probability p2(1− p)

• Bob receives α|111〉+ β|000〉 with probability p3
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• After Bob’s CNOTs

• Bob gets (α|000〉+ β|111〉)|00〉 with probability (1− p)3

• Bob gets (α|100〉+ β|011〉)|10〉 with probability p(1− p)2

• Bob gets (α|010〉+ β|101〉)|11〉 with probability p(1− p)2

• Bob gets (α|001〉+ β|110〉)|01〉 with probability p(1− p)2

• Bob gets (α|110〉+ β|001〉)|01〉 with probability p2(1− p)

• Bob gets (α|101〉+ β|010〉)|11〉 with probability p2(1− p)

• Bob gets (α|011〉+ β|100〉)|10〉 with probability p2(1− p)

• Bob gets (α|111〉+ β|000〉)|00〉 with probability p3
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• Bob flips one of the qubits depending on the values of x and y

• Pfail = 3p2 − 2p3 ∼ O(p2) : add last four

• If nothing is done, Pfail ∼ O(p), single bit flip error

• With just three qubits, we reduced the error probability by a
factor of 1

3p ∼ 300 for p = 0.001

• Suppression is more powerful with more qubits
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Phase flip error

• Bit flip error is only one kind of possible error

• Phase flip error: α|0〉+ β|1〉 → α|0〉 − β|1〉
• No classical equivalent

• How to correct phase flip errors ?

• Turn phase flip channel into bit flip channel !

• |+〉 ≡ |0〉+|1〉√
2

, |−〉 ≡ |0〉−|1〉√
2

• In this basis phase flip acts like bit flip

• In |+〉 and |−〉 basis the state is 1√
2

[
α + β
α− β

]
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a|000>+b|111>|0>

|0>

a|0>+b|1> H

H

H

• α|0〉+ β|1〉 ⇒ α|+ ++〉+ β| − −−〉
• Remaining procedure same as before

• Combination of the phase flip and the bit flip code can
protect against arbitrary errors: Shor Code
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Classical cryptography

• Alice wants to send a secret message to Bob ... both have
exchanged an encryption key beforehand

• 0 1 0 0 1 1 0 0 1 0 0 0 message

• 1 1 0 1 0 1 1 1 0 1 0 0 encryption key

• 1 0 0 1 1 0 1 1 1 1 0 0 sum = encrypted message

• Message transmitted to Bob over public channel

• 1 0 0 1 1 0 1 1 1 1 0 0 encrypted message

• 1 1 0 1 0 1 1 1 0 1 0 0 encryption key

• 0 1 0 0 1 1 0 0 1 0 0 0 difference = message

• Provably secure if the key is as long as the message
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Problem: key distribution

• If Eve (eavesdropper) gets hold of the key, she may listen to
the encrypted message

• She can do it without Bob’s knowledge of the interception of
the message

• However, quantum mechanics can be used to distribute or
create a key, giving no chance to Eve

• EPR protocol: Alice produces a number of 2-qubit states
|β00〉 = 1√

2
(|00〉+ |11〉) and sends one qubit of the pair to

Bob

• Both make measurements on their half of the pair (in the
same basis), and the results are random but identical on both
sides ⇒ generation of a key
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Eavesdropping

• If Eve knew the basis she could also get the key

• If Eve secretly tries to read the key during transmission, she
will change the qubit state

• Alice and Bob can check this by selecting a random subset of
the pairs, and test if they violate Bell’s inequality

• Eve cannot get any information from the qubits transmitted
from Alice to Bob without disturbing their state

• This is the heart of quantum cryptography
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