

Heavy-Hole Spin Relaxation and Decoherence in Quantum Dots

DENIS BULAEV AND DANIEL LOSS

Department of Physics and Astronomy, University of Basel, Switzerland

where $\omega_{\pm} = \Omega \pm \omega_c/2$, $\Omega = \sqrt{\omega_0^2 + \omega_c^2/4}$, and $\omega_Z = g_{zz} \mu_B B/\hbar$. SO interaction leads to level anticrossings for $g_{zz} > 0$.

ABSTRACT

We investigate heavy-hole spin relaxation and decoherence in quantum dots in perpendicular magnetic fields [1]. We show that at low temperatures the spin decoherence time is two times longer than the spin relaxation time. We find that the spin relaxation time for heavy holes can be comparable to or even longer than that for electrons in strongly two-dimensional quantum dots. We discuss the difference in the magnetic-field dependence of the spin relaxation rate due to Rashba or Dresselhaus spin-orbit coupling for systems with positive (i.e., GaAs quantum dots) or negative (i.e., InAs quantum dots) g-factor.

Spin Relaxation and Decoherence

$$\frac{1}{T_1} = W_{n1} + \sum_{i=1}^{n-1} W_{in}, \quad \frac{1}{T_2} = \frac{1}{2T_1} + \frac{1}{2} \sum_{i=2}^{n-1} W_{i1},$$

where W_{ij} is the transition rate from state j to state i. At low temperatures $(\hbar \omega_{ph} \gg T)$,

$T_2 = 2T_1.$

Low *B*, Field Dependence

Electrons

$$\langle H_{so} \rangle \propto B \Rightarrow \frac{1}{T_1} \propto B^{2+3} \left(2N_{\omega_Z} + 1 \right) \left[B < 4 \text{ T} \right]$$

Heavy holes

$$\begin{array}{ll} \text{Dresselhaus} & \langle H_{so} \rangle \propto B \Rightarrow \frac{1}{T_1} \propto B^{2+3} \left(2N_{\omega_Z} + 1 \right) \ [B < 0.5 \text{ T}] \\ \\ \text{Rashba} & \langle H_{so} \rangle \propto B^3 \Rightarrow \frac{1}{T_1} \propto B^{6+3} \left(2N_{\omega_Z} + 1 \right) \ [B < 0.5 \text{ T}] \\ \end{array}$$

Conclusions

- Anticrossing and spin mixing (GaAs QD)
- Cusp-like behavior of the spin relaxation (GaAs QD)
- No cusp in spin relaxation (InAs QD)
- Rashba $\propto B^9$ Dresselhaus $\propto B^5$
- Spin relaxation time for heavy holes CAN BE longer than for electrons
- $T_2 = 2T_1$ at low temperatures

References

 $\left[1\right]$ D. V. Bulaev and D. Loss, cond-mat/0503181 (to be published in Phys. Rev. Lett.).

[2] R. Winkler, H. Noh, E. Tutuc, and M. Shayegan, Phys. Rev. B 65, 155303 (2002).