Random processes: Theory and applications from physics to finance

1. Kramers' escape problem

1.1. Introduction to the Problem

As a model for a chemical reaction we study the escape from a metastable state in a double-well potential $V(x)$, where x is the reaction coordinate. Furthermore x_{a} refers to the metastable

Figure 1: Double-well potential model for a chemical reaction
reactant state and x_{c} to the product. The transition state is denoted by x_{b} and the activation energy is given by $E_{b}=V\left(x_{b}\right)-V\left(x_{a}\right)$. In the following we try to derive an expression for the reaction rate k (per reactant).

1.2. Description of dyamics

The dynamics of this system is described by the Langevin equation

$$
M \ddot{\tilde{x}}=-M \gamma \dot{\hat{x}}-V^{\prime}(x)-\sqrt{2 k_{\mathrm{B}} T \gamma / M} \hat{\xi}(t)
$$

with $\hat{\xi}(t)$ being Gaussian white noise, i.e. $\langle\hat{\xi}(t)\rangle=0$ and $\left\langle\hat{\xi}(t) \hat{\xi}\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)$.
Equivalently it can be desribed by the Klein-Kramers equation

$$
\begin{equation*}
\frac{\partial}{\partial t} p(x, v, t)+\operatorname{div} \vec{j}(x, v, t)=0 \tag{1}
\end{equation*}
$$

with the probability current density

$$
\vec{j}(x, v, t)=\left(\begin{array}{c}
v p(x, v, t) \\
-\left[\frac{V^{\prime}(x)}{M}+\gamma v+\frac{\gamma k_{B} T}{M} \frac{\partial}{\partial v}\right]
\end{array}\right](x, v, t) .
$$

The stationary solution is given by the Boltzmann distribution

$$
p^{\mathrm{eq}}(x, v)=Z^{-1} \exp \left\{-\frac{M v^{2} / 2+V(x)}{k_{\mathrm{B}} T}\right\} .
$$

Show that this ansatz indeed solves Eq. (1). Note that the equilibrium probability does not depend on γ ! Does this result surprise you?

1.2.1. Separation of time scales

The nonequilibrium preparation of a "particle" around x_{a} will decay on a time-scale given by the inverse of the reaction rate k. For $k_{\mathrm{B}} T \ll E_{b}$, this time-scale $1 / k$ is separated from all other time-scales of the problem, e.g. the time-scale of the damped oscillation around x_{a}, fluctuations around x_{a}, etc. Therefore we assume that the reactant state is equilibriated, i.e. sharply peaked around x_{a}, before the transition. Convince yourself that this assumption is valid.

2. Flux-over-population method

There are several ways to calculate the reaction rate k. One method consists in calculating the inverse of the mean-first-passage time (cf. problem set 5). Here, we will follow an alternative route and employ the so-called flux-over-population method due to Farkas and Kramers. Its main idea is to generate a current-carrying non-equilibrium solution by adding to the FokkerPlanck dynamics (1) a source term $S(x, v)$ which feeds in reactant particles around x_{a} and a sink term which removes the same amount of product particles around x_{c}. See illustration in Fig. 1.

This provides a new non-equilibrium stationary dynamics describing the decay process. Due to the separation of time scales, the specific form of the source term $S(x, v)$ is not relevant: the in-feed around x_{a} thermalizes before the decay and the out-take around x_{c} does not return to x_{a} anyway.

2.1. Reaction rate in the flux-over-population method

Due to the addition of the source term the Fokker-Planck equation reads

$$
\frac{\partial}{\partial t} p(x, v, t)+\operatorname{div} \vec{j}(x, v, t)=S(x, v)
$$

with stationary, current-carrying solution $p^{s}(x, v)$ and $j^{\mathrm{s}}(x, v)$, which fulfill

$$
\operatorname{div} j^{\mathrm{s}}(x, v)=S(x, v)
$$

In the flux-over-population method the reaction rate k is derived as the "flux over population"

$$
k=\frac{\Phi}{N}
$$

where the flux across x_{b} is given by

$$
\Phi:=\int_{-\infty}^{\infty} \mathrm{d} v j_{x}\left(x=x_{b}, v\right)=\int_{-\infty}^{\infty} \mathrm{d} v v p^{\mathrm{s}}\left(x_{b}, v\right)
$$

and the population of the reactant state reads

$$
N:=\int_{-\infty}^{\infty} \mathrm{d} v \int_{-\infty}^{x_{b}} \mathrm{~d} x p^{\mathrm{s}}(x, v)
$$

2.2. Ansatz due to Kramers

To solve the Fokker-Planck equation we use the ansatz

$$
p^{\mathrm{s}}(x, v)=p^{\mathrm{eq}}(x, v) \zeta(x, v),
$$

where $\zeta(x, v)$ denotes the Kramers form function.
We have to take three regimes into account
(i) $\quad x \ll x_{b}: \quad p^{\mathrm{s}}(x, v) \approx p^{\mathrm{eq}}(x, v) \quad \Rightarrow \zeta(x, v) \approx 1$
(ii) $\quad x \approx x_{b}$: no sources and sinks $\Rightarrow \operatorname{div} j^{\mathrm{s}}(x, v) \approx 0$
(iii) $x \gg x_{b}: p^{\mathrm{s}}(x, v) \ll p^{\mathrm{eq}}(x, v) \quad \Rightarrow \zeta(x, v) \rightarrow 0$

Thus we do not prescribe the source term $S(x, v)$ a priori but look for a solution fulfilling conditions (i)-(iii) and then can calculate $S(x, v)$ from $\operatorname{div} j^{s}(x, v)$ and verify its validity a posteriori.

2.3. Barrier region

Consider the condition (ii) in the barrier region and approximate

$$
V(x) \approx V\left(x_{b}\right)+\frac{V^{\prime \prime}\left(x_{b}\right)}{2}\left(x-x_{b}\right)^{2}=V\left(x_{b}\right)-\frac{1}{2} M \omega_{b}^{2}\left(x-x_{b}\right)^{2}
$$

with the barrier coefficient $\omega_{b}=\sqrt{\left|V^{\prime \prime}\left(x_{b}\right)\right| / M}$.
Condition (ii) therefore leads to the equation

$$
\left\{-\frac{\partial}{\partial x} v+\frac{\partial}{\partial v}\left[-\omega_{b}^{2}\left(x-x_{b}\right)+\gamma v\right]+\frac{\gamma k_{\mathrm{B}} T}{M} \frac{\partial^{2}}{\partial v^{2}}\right\} p^{\mathrm{s}}(x, v)=0 .
$$

Show that Kramers form function $\zeta(x, v)$ obeys the backwards equation

$$
\left\{-v \frac{\partial}{\partial x}+\left[-\omega_{b}^{2}\left(x-x_{b}\right)-\gamma v\right] \frac{\partial}{\partial v}+\frac{\gamma k_{\mathrm{B}} T}{M} \frac{\partial^{2}}{\partial v^{2}}\right\} \zeta(x, v)=0,
$$

with the boundary conditions $\zeta\left(x-x_{b} \rightarrow-\infty, v\right)=1$ and $\zeta\left(x-x_{b} \rightarrow \infty, v\right)=0$.

2.4. Ansatz for $\zeta(x, v)$

Kramers suggested the ansatz for $\zeta(x, v)$

$$
\zeta(x, v)=f\left(x-x_{b}+a v\right)=f(u) .
$$

Show that the function $f(u)$ has to fulfill

$$
-f^{\prime}(u)\left[v(1+a \gamma)+\omega_{b}^{2}\left(x-x_{b}\right) a\right]+\frac{\gamma k_{\mathrm{B}} T}{M} a^{2} f^{\prime \prime}(u)=0 .
$$

In order for this ansatz to make sense, the prefactor to $f^{\prime}(u)$ has to be a function of $u=$ $x-x_{b}+a v$, as well. Convice yourself that this means that it is linear in u :

$$
v(1+a \gamma)+\omega_{b}^{2}\left(x-x_{b}\right) a=-\lambda u
$$

2.5. Solution for $\zeta(x, v)$

Derive the solutions

$$
\lambda_{ \pm}=-\frac{\gamma}{2} \pm \sqrt{\left(\frac{\gamma}{2}\right)^{2}+\omega_{b}^{2}}, \quad a_{ \pm}=-\frac{\lambda_{ \pm}}{\omega_{b}^{2}}
$$

and show that λ_{-}can not be a solution due to the boundary conditions and thus $\zeta(x, v)$ is given by

$$
\zeta(x, v)=\sqrt{\frac{M \omega_{b}^{4}}{2 \pi k_{\mathrm{B}} T \gamma \lambda_{+}}} \int_{x-x_{b}-\frac{\lambda_{+} v}{\omega_{b}^{2}}}^{\infty} \mathrm{d} u \exp \left[-\frac{M \omega_{b}^{4}}{2 k_{\mathrm{B}} T \gamma \lambda_{+}} u^{2}\right] .
$$

2.6. Solution of the reaction rate k

To calculate the population N we assume that $p^{\mathrm{s}}(x, v)$ is strongly peaked around x_{a} and we can thus approximate

$$
V(x)=V\left(x_{a}\right)+\frac{V^{\prime \prime}\left(x_{a}\right)}{2}\left(x-x_{a}\right)^{2}=V\left(x_{a}\right)+\frac{1}{2} M \omega_{a}^{2}\left(x-x_{a}\right)^{2}
$$

where $\omega_{a}=\sqrt{V^{\prime \prime}\left(x_{a}\right) / M}$.
Derive the expression for the population

$$
N=Z^{-1} \frac{2 \pi k_{\mathrm{B}} T}{M \omega_{a}} \exp \left[-\frac{V\left(x_{a}\right)}{k_{\mathrm{B}} T}\right] .
$$

Similarly one can derive the result for the flux along the barrier

$$
\Phi=Z^{-1} \frac{\lambda_{+} k_{\mathrm{B}} T}{M \omega_{b}} \exp \left[-\frac{V\left(x_{b}\right)}{k_{\mathrm{B}} T}\right] .
$$

With the flux-over-population method we, thus, finally find the reaction rate

$$
k=\frac{\sqrt{(\gamma / 2)^{2}+\omega_{b}^{2}}-\gamma / 2}{\omega_{b}} \frac{\omega_{a}}{2 \pi} \exp \left[-\frac{E_{b}}{k_{\mathrm{B}} T}\right] .
$$

Discuss and interpret the different factors in this result.

