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Problem set 8 2008/04/30

1. Kramers’ escape problem

1.1. Introduction to the Problem

As a model for a chemical reaction we study the escape from a metastable state in a double-well

potential V (x), where x is the reaction coordinate. Furthermore xa refers to the metastable

V (x)V (x)
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xx
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source S(x, v) > 0
sink S(x, v) < 0

Figure 1: Double-well potential model for a chemical reaction

reactant state and xc to the product. The transition state is denoted by xb and the activation

energy is given by Eb = V (xb)−V (xa). In the following we try to derive an expression for the

reaction rate k (per reactant).

1.2. Description of dyamics

The dynamics of this system is described by the Langevin equation

M ¨̂x = −Mγ ˙̂x− V ′(x)−
√

2kBTγ/M ξ̂(t)

with ξ̂(t) being Gaussian white noise, i.e. 〈ξ̂(t)〉 = 0 and 〈ξ̂(t)ξ̂(t′)〉 = δ(t− t′).
Equivalently it can be desribed by the Klein-Kramers equation

∂

∂t
p(x, v, t) + div~j(x, v, t) = 0 (1)

with the probability current density

~j(x, v, t) =

(
v p(x, v, t)

−
[
V ′(x)
M

+ γv + γkBT
M

∂
∂v

]
p(x, v, t)

)
.
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The stationary solution is given by the Boltzmann distribution

peq(x, v) = Z−1 exp

{
−Mv2/2 + V (x)

kBT

}
.

Show that this ansatz indeed solves Eq. (1). Note that the equilibrium probability does not

depend on γ! Does this result surprise you?

1.2.1. Separation of time scales

The nonequilibrium preparation of a “particle” around xa will decay on a time-scale given

by the inverse of the reaction rate k. For kBT � Eb, this time-scale 1/k is separated from

all other time-scales of the problem, e.g. the time-scale of the damped oscillation around xa,

fluctuations around xa, etc. Therefore we assume that the reactant state is equilibriated,

i.e. sharply peaked around xa, before the transition. Convince yourself that this assumption

is valid.

2. Flux-over-population method

There are several ways to calculate the reaction rate k. One method consists in calculating the

inverse of the mean-first-passage time (cf. problem set 5). Here, we will follow an alternative

route and employ the so-called flux-over-population method due to Farkas and Kramers. Its

main idea is to generate a current-carrying non-equilibrium solution by adding to the Fokker-

Planck dynamics (1) a source term S(x, v) which feeds in reactant particles around xa and a

sink term which removes the same amount of product particles around xc. See illustration in

Fig. 1.

This provides a new non-equilibrium stationary dynamics describing the decay process. Due

to the separation of time scales, the specific form of the source term S(x, v) is not relevant:

the in-feed around xa thermalizes before the decay and the out-take around xc does not return

to xa anyway.

2.1. Reaction rate in the flux-over-population method

Due to the addition of the source term the Fokker-Planck equation reads

∂

∂t
p(x, v, t) + div~j(x, v, t) = S(x, v)

with stationary, current-carrying solution ps(x, v) and js(x, v), which fulfill

divjs(x, v) = S(x, v).

In the flux-over-population method the reaction rate k is derived as the “flux over popula-

tion”

k =
Φ

N
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where the flux across xb is given by

Φ :=

∞∫
−∞

dv jx(x = xb, v) =

∞∫
−∞

dv v ps(xb, v)

and the population of the reactant state reads

N :=

∞∫
−∞

dv

xb∫
−∞

dx ps(x, v).

2.2. Ansatz due to Kramers

To solve the Fokker-Planck equation we use the ansatz

ps(x, v) = peq(x, v) ζ(x, v),

where ζ(x, v) denotes the Kramers form function.

We have to take three regimes into account

(i) x� xb : ps(x, v) ≈ peq(x, v) ⇒ ζ(x, v) ≈ 1

(ii) x ≈ xb : no sources and sinks ⇒ divjs(x, v) ≈ 0

(iii) x� xb : ps(x, v)� peq(x, v) ⇒ ζ(x, v)→ 0

Thus we do not prescribe the source term S(x, v) a priori but look for a solution fulfilling

conditions (i)-(iii) and then can calculate S(x, v) from divjs(x, v) and verify its validity a

posteriori.

2.3. Barrier region

Consider the condition (ii) in the barrier region and approximate

V (x) ≈ V (xb) +
V ′′(xb)

2
(x− xb)2 = V (xb)−

1

2
Mω2

b (x− xb)2

with the barrier coefficient ωb =
√
|V ′′(xb)|/M .

Condition (ii) therefore leads to the equation{
− ∂

∂x
v +

∂

∂v

[
−ω2

b (x− xb) + γv
]

+
γkBT

M

∂2

∂v2

}
ps(x, v) = 0.

Show that Kramers form function ζ(x, v) obeys the backwards equation{
−v ∂

∂x
+
[
−ω2

b (x− xb)− γv
] ∂
∂v

+
γkBT

M

∂2

∂v2

}
ζ(x, v) = 0,

with the boundary conditions ζ(x− xb → −∞, v) = 1 and ζ(x− xb →∞, v) = 0.
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2.4. Ansatz for ζ(x, v)

Kramers suggested the ansatz for ζ(x, v)

ζ(x, v) = f(x− xb + av) = f(u).

Show that the function f(u) has to fulfill

−f ′(u)
[
v(1 + aγ) + ω2

b (x− xb)a
]

+
γkBT

M
a2f ′′(u) = 0.

In order for this ansatz to make sense, the prefactor to f ′(u) has to be a function of u =

x− xb + av, as well. Convice yourself that this means that it is linear in u:

v(1 + aγ) + ω2
b (x− xb)a = −λu .

2.5. Solution for ζ(x, v)

Derive the solutions

λ± = −γ
2
±
√(γ

2

)2

+ ω2
b , a± = −λ±

ω2
b

,

and show that λ− can not be a solution due to the boundary conditions and thus ζ(x, v) is

given by

ζ(x, v) =

√
Mω4

b

2πkBTγλ+

∞∫
x−xb−

λ+v

ω2
b

du exp

[
− Mω4

b

2kBTγλ+

u2

]
.

2.6. Solution of the reaction rate k

To calculate the population N we assume that ps(x, v) is strongly peaked around xa and we

can thus approximate

V (x) = V (xa) +
V ′′(xa)

2
(x− xa)2 = V (xa) +

1

2
Mω2

a(x− xa)2

where ωa =
√
V ′′(xa)/M .

Derive the expression for the population

N = Z−1 2πkBT

Mωa
exp

[
−V (xa)

kBT

]
.

Similarly one can derive the result for the flux along the barrier

Φ = Z−1λ+kBT

Mωb
exp

[
−V (xb)

kBT

]
.

With the flux-over-population method we, thus, finally find the reaction rate

k =

√
(γ/2)2 + ω2

b − γ/2
ωb

ωa
2π

exp

[
− Eb
kBT

]
.

Discuss and interpret the different factors in this result.
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