
Random processes: Theory and applications from physics to finance FS 2009

Problem set 5 to be handed in by 2009/04/01

1. Problem: Markov chains (10 points)

1.1. Definition

The most simple class of Markov processes are the so-called Markov chains, which are char-
acterized by the following properties:

• The discrete time-variable t takes only only integer values t = n ∈ Z.

• The random process x̂(t) only assumes a discrete set of values, which can be labeled by
integers i.

• The process is time-homogeneous.

An even simpler special case are finite Markov chains, for which additionally the number of
states is finite: i = 1, . . . , R for some integer R.

1.2. Matrix of transition probabilities and stationary solutions

The transition probability p1|1(x2, t2|x1, t1) of a Markov chain can be written as a (possibly

infinitely dimensional) matrix P(n) with components P
(n)
i2,i1

, which depends only on the discrete
time-difference n = t2−t1 ∈ Z. Furthermore, the one-time probabilities p1(x, t) can be written
as a vector p(n).

(a) Derive from the Chapman-Kolmogorov equation for Markov processes equation the rela-
tion

P(n) = Pn , (1)

where P := P(1) is the matrix of transition probabilities for a single time-step n→ n + 1.

(b) Write p(n) in terms of the initial probabilities p(0) at time n = 0?

(c) Obviously, the transition probabilities Pij have to be non-negative. Additionally, they have
to fulfill the condition ∑

i

Pij = 1 . (2)

Why?
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(d) Any normalized vector ps with
Pps = ps (3)

is called a stationary solution. Show that this condition indeed guarantees that p(n) = ps is a
solution of the Markov chain, i.e., conforms to the dynamics as described in (b).

Derive from Eq. (2) that such a solution must always exist. Hint: Write Eq. (2) in the form
of an eigenvalue problem for the matrix PT , i.e., the transpose of P. What does this imply for
the eigenvalue problem of P?

1.3. Example: Cumulative maximum

Suppose a device measures a quantity that assumes integer values 1, . . . , R at discrete times
n = 1, 2, . . . and only records the largest value observed so far. We assume that the measured
values x̂n are independent and identically distributed with probabilities qi := Prob(x̂n) = i.
The recorded result can be written as

m̂n = max(x̂1, . . . , x̂n) . (4)

(a) Argue that m̂n is a finite Markov chain and express the matrix P of the transition proba-
bilities in terms of the probabilities qi.

(b) Now, consider the special case of a uniform distribution qi = 1/R of the x̂n. Calculate

the probability p
(n)
m = Prob(m̂n = m) either by directly using the definition (4) of the process

(Hint: What are all possible ways to obtain the result m at time n?) or by making use of
relation (1).

Discuss the long-time behavior of the two border cases p
(n)
1 and p

(n)
R .

Find a stationary solution for this problem.

(c) Now consider again the general case and derive an expression for the probabilities p
(n)
m .

2. Metropolis-Hastings algorithm (no points)

2.1. Motivation: Calculating weighted averages by sampling

An important application of Markov chains arises in the context of Monte-Carlo simulations
for the evaluation of weighted averages of the form

f̄ :=
∑

i

fi wi . (5)
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Here, fi is the quantity to be averaged and wi > 0 is a normalized weighting function:
∑

i wi =
1. A typical example is the thermal average with wi = (1/Z) exp(−Ei/kBT ) where Ei is
the energy of a state i, kB denotes Boltzmann’s constant, T is the temperature and the
normalization factor is given by the partition function Z =

∑
i exp(−Ei/kBT ).

When the weighting factor wi is rather “peaked”, i.e., depends strongly on the state i, it
becomes rather inefficient to directly perform the sum in Eq. (5): One will most often hit
states with wi ≈ 0, which do not contribute noticeably to the result. In such a situation, it is
advantageous to reinterpret the sum as the expectation value of the random variable fî where
the î are drawn from the distribution wi, i.e., Prob(̂i = i) = wi:

f̄ = 〈fî〉 . (6)

For the evaluation of the right-hand side of this relation, one then samples a large number N
of states i1, . . . , iN according to this distribution and approximates

f̄ ≈ 1

N

N∑
n=1

fin . (7)

This average will then typically yield a much improved approximation for f̄ already for a
rather small number of samples N (compared to the total number of states i).

This leaves us with the task of how to efficiently sample from a given distribution wi, This
problem often can be solved by the so-called Metropolis algorithm, or its generalization, the
so-called Metropolis-Hastings algorithm.

2.2. Markov chain for Metropolis-Hastings algorithm

The basic idea of the Metropolis-Hastings algorithm is to generate samples from a given
distribution as the stationary solution of a suitably constructed Markov chain. The stochastic
dynamics described by the Markov chain is then simulated by a Monte-Carlo algorithm, which
yields (after stationarity has been achieved) for every time-step a new sample. Doing so,
implicitly replaces the ensemble average (7) by a time-average. We will not be able to discuss
in detail here the underlying assumption of “ergodicity”, which is based on Eq. (9) below, but
just consider the concept of the algorithm.

We first choose a proposal distribution Qij for the transition probabilities of the Markov chain.
As the name says, it generates transitions between the different states—not all of which will be
“accepted”, see below. In particular, it has to allow the process to reach (possible after several
steps) from every starting state any state in the region we are interested in.1 Technically, we
require that Qij = 0 if and only if Qji = 0.

1The proposal distribution has to be chosen in such a way that sampling from it is easily possible. Often
one thus employs a Gaussian “centered” around j or assumes a uniform distribution on a certain subset of
states directly reachable from j. The appropriate choice can often be an art!
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We then define the transition matrix of the Markov chain as2

Pij := Qij min

(
1,

wi Qji

wj Qij

)
for i 6= j (8)

Why is it enough to give only the expression for the off-diagonal matrix elements?

Show that w is a stationary solution of this Markov chain which additionally fulfills the so-
called detailed balance condition

Pij wj = Pji wi . (9)

Hint: First verify this condition and then derive from it the stationarity (3).

How can Eq. (9) be interpreted in general and in the particular case of a thermal average?

Finally, we come to the question on how to simulate a Markov chain described by transition
probabilities of the form (8). Such a simulation starts from an arbitrary initial state j and
then jumps to a new state i 6= j, randomly according to the probability Pij for fixed j; or just
remains—with probability Pjj—in its original state.

In order to sample from these possible events with the correct probability, we first randomly
draw a state i according to the proposal distribution Qij. Now, if i = j, the state remains the
same. If i 6= j we only jump to the new state i (“accept” the result) when

• either
wi Qji

wj Qij

≥ 1

• or a random number drawn uniformly from the interval [0, 1] is smaller than
wi Qji

wj Qij

< 1.

Otherwise, we stay in the original state j. Show that this method results in the desired jump
probability Pij.

Interpret the acceptance criterion in the case of a thermal average with symmetric Qij = Qji.

This procedure is then repeated starting from the new (old) state i (j). After some time, the
dynamics will “equilibrate” and the samples will be drawn from the stationary distribution w.
Then, every subsequent sample can be used, e.g., in the average (7). Convince yourself that
correlations in the samples are not a problem.

Finally, notice that the expression (8) only contains ratios of the weighting factors wi. Why
can this be crucial?

2Note that in many cases, the proposal distribution is chosen to be symmetric: Qij = Qji. Then one finds
Pij = Qij min(1, wi/wj) for i 6= j. This was the case for the original Metropolis algorithm.
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