1. Problem: Branching processes (10 points)

The so-called branching process models a chain reaction occuring in successive generations. Initially, for the zeroth generation, we start with a single event. This event causes in the first generation \hat{r} further events, where \hat{r} is a random non-negative integer with distribution p_{r}. If $\hat{r}=0$, the process stops. Otherwise, every direct descendant causes in the next (second) generation further events according to the same distribution p_{r} and so on. The events of each generation act independently of each other.

Whereas an obvious example for such a process are nuclear chain reactions, originally this process has been invented by F. Galton to study the survival of family names (hence the name Galton-Watson process). Another example is the cascading failure of components like power lines which is induced by an overloading occuring after the initial failure of a line.

1.1. Recursion relation

Let \hat{y}_{n} be the number of events, i.e., the size of the n-th generation with generating function $f_{n}(z):=f_{\hat{y}_{n}}(z)=\left\langle z^{\hat{y}_{n}}\right\rangle$. In particular, $y_{0}=1$ in the 0 -th generation. Furthermore, $f_{1}(z)=$ $f(z)$, where $f(z)=\left\langle z^{\hat{r}}\right\rangle=\sum_{r=0}^{\infty} p_{r} z^{r}$ is the generating function corresponding to the variable \hat{r}. Derive from the description of the branching process the recursive relation

$$
\begin{equation*}
f_{n}(z)=f\left(f_{n-1}(z)\right) \tag{1}
\end{equation*}
$$

Hint: The number of descendants in the n-th generation can be considered as the sum of the descendants of the members of the first generation (\rightarrow compound process).

1.2. Probability for a finite cascade

An important question is whether the branching process continues forever or stops after a finite number of generations, i.e., whether $\hat{y}_{n}=0$ for an arbitrary n.

1.2.1. Recursion formula

How can the probability $q_{n}:=P\left(\hat{y}_{n}=0\right)$ that the process stops at or before the n-th generation be calculated from the generating function $f_{n}(z)$? Derive from Eq. (1) a recursion formula for the q_{n}. What is the initial condition q_{1} ?

1.2.2. Termination of branching process

Excluding the extreme cases $p_{0}=0$ and $p_{0}=1$ derive from the form of the generating function $f(z)$ that the q_{n} approach a limiting value $q \leq 1$ satisfying

$$
\begin{equation*}
q=f(q) . \tag{2}
\end{equation*}
$$

Show geometrically that equation (2) has the unique solution $q=1$ if and only if the first derivative $f^{\prime}(1)$ of the characteristic function satisfies $f^{\prime}(1) \leq 1$.
Hint: The characteristic function is convex. Why?
What does condition (2) yield for the special case of the variable \hat{r} being a Poisson distribution with mean a ?

1.2.3. Mean size of generations

Show that the expected size of the n-th generation is given by

$$
\left\langle\hat{y}_{n}\right\rangle=f_{n}^{\prime}(1) .
$$

Derive a chain rule for $\left\langle\hat{y}_{n}\right\rangle$ and show that

$$
\left\langle\hat{y}_{n}\right\rangle=\mu^{n},
$$

where μ is the mean value of \hat{r}. Why is it intuitively clear that the branching process dies out for $f^{\prime}(1)<1$?

2. Problem: Box-Muller algorithm for the generation of Gaussian random variables (no points)

For the generation of random numbers according to a certain distribution on a computer, one usually starts with uniformly distributed pseudo-random numbers ${ }^{1}$ and then does a suitable transformation to the desired random variable. One of the most famous methods, the so-called Box-Muller transform, deals with the generation of Gaussian random numbers.

Show that from two independent uniformly distributed in the interval $(0,1]$ random numbers \hat{x}_{1} and \hat{x}_{2}, one obtains two independent Gaussian variables \hat{z}_{1} and \hat{z}_{2} with zero mean and unit variance by means of the transformation

$$
\begin{align*}
& \hat{z}_{1}=\sqrt{-2 \ln \hat{x}_{1}} \cos \left(2 \pi \hat{x}_{2}\right) \tag{3}\\
& \hat{z}_{2}=\sqrt{-2 \ln \hat{x}_{1}} \sin \left(2 \pi \hat{x}_{2}\right) \tag{4}
\end{align*}
$$

Hint: Write the joint probability density of the transformed variables using a two-dimensional δ-function and then evaluate this expression using the Jacobian $\frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(z_{1}, z_{2}\right)}$ of the transformation.

[^0]
[^0]: ${ }^{1}$ Pseudo-random number generators are a whole topic by itself, which we do not cover here. For an excellent overview see, e.g., Chapter 3 in Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd edition (Addison-Wesley, 1997)

