
Random processes: Theory and applications from physics to finance HS 2012

Problem set 4 to be handed in by 2012/10/17

1. Problem: Shot noise (10 points)

1.1. Introduction

Consider the electrical current Î(t) induced by a fixed voltage across a resistor. Resulting

from the motion of single charge carriers, this current will fluctuate in time around its mean

〈Î(t)〉, an effect we model by describing it as a random process. For the moment, we only

assume that this process is stationary, which implies that the mean is in fact time-independent:

〈Î(t)〉 =: I.

In the following, we will derive a relation for the strength of the current fluctuations, the

so-called current noise. As a trick, we will not consider the current itself but its time-integral,

i.e., the charge.

The reason for this is that the current Î(t) itself is in fact a not very well-behaved process:

every realization consists of a sum of narrow peaks—one for every charge transfer event—with

a width determined by properties of the charge detector. In an idealized picture, we would

approximate these peaks by δ-functions, and the current would consist of a sum of such δ-

peaks at random instances in time. When calculating the noise, which is related to correlation

functions, we obtain products of such δ-functions, which leads to several problems, which we

will circumvent with a charge-based approach.

1.2. Charge-number process

Let us thus look at the electric charge eN̂(t) transfered through the resistor between time 0

and time t:

eN̂(t) :=

∫ t

0

dt′ Î(t′), (1)

Is the process N̂(t) counting the number of transfered charges stationary, as well?

So far, we have not made any assumption concerning the current Î(t), beside its stationarity.

We will now do so implicitely by assuming that the transferred charge N̂(t) is described by a

1



Poisson process with parameter λ:

Prob
(
N̂(t) = N

)
= pN(t) = e−λt

(λt)N

N !
. (2)

Check that this assumption is consistent with the definition (1) at time t = 0.

Furthermore, what does it imply for the sign of the current Î(t)? What physical situation

(temperature, voltage) do we thus restrict ourselves?

Sketch a couple of realizations of the process N̂(t) and the corresponding current Î(t).

To determine the parameter λ, express it in terms the average current I.

Hint: Take expectation values of both sides of Eq. (1).

1.3. MacDonald’s theorem

We will now the derived, the desired relation for the current noise, which is defined as the

Fourier transform

SÎ(ω) :=

∫
dτ eiωτSÎ(τ),

of the current autocorrelation function SÎ(τ) := 〈〈Î(τ)Î(0)〉〉 = 〈
[
Î(τ)− I

][
Î(0)− I

]
〉. Thus,

SÎ(ω) is the spectral density of the current noise Î(t).

Proof MacDonald’s theorem

SÎ(ω) = ω

∞∫
0

dt sin(ωt)
d

dt
〈〈N̂(t)2〉〉 (3)

which relates this noise with the fluctuations of the time-integral. The upper limit of the

above equation is guaranteed by a converging factor e−εt.

Note that this proof will be very general, i.e., it does not rely on the previous assumption that

N̂(t) is a Poisson process. It requires that Î(t) is stationary and real, though. Why can this

already been seen from (3)?

Hint: To proof Eq. (3) first derive the relation

d

dt
〈〈N̂(t)2〉〉 = 2

t∫
0

dτ SÎ(τ)

2



Considering again the special case of N̂(t) being the Poisson process (2), derive from the

McDonald theorem the so-called Schottky’s theorem

SÎ(ω) = eI.

Often, this is expressed in terms of the Fano factor F = SÎ(ω)/e〈I〉 = 1.

2. Problem: Sinusoidal process with random amplitude and phase (no points)

Consider a stochastic process x̂(t) = Â sin(ωt + φ̂) with fixed (deterministic) angular fre-

quency ω but random real amplitude Â and phase φ̂, which we assume to be independent but

otherwise arbitrary except that the second moment 〈Â2〉 has to be finite.

2.1. Mean and autocorrelation function

Express the mean 〈x̂(t)〉 and the autocorrelation function S(t1, t2) = 〈
[
x̂(t1)−〈x̂(t1)〉

][
x̂(t2)−

〈x̂(t2)〉
]
〉 of the process in terms of the moments of Â and the characteristic function of φ̂.

What necessary condition does φ̂ have to fulfill in order for the process x̂(t) to be stationary,

i.e., under which conditions is 〈x̂(t)〉 = const. and S(t1, t2) = S(t1 − t2, 0).

2.2. Uniformly distributed phase

Consider now the special case that the phase is uniformely distributed on the interval [0, 2π].

Calculate the mean and autocorrelation in this case.

Show that the process is now (strictly) stationary, i.e., that x̂(t) and x̂(t + τ) have the same

same hierarchy of distribution functions.

Hint: Consider the process ψ̂ = (ωτ + φ̂) mod 2π.
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3. Problem: Correlation functions and the Cauchy-Schwarz inequality (no points)

3.1. Semi-positivity of the autocorrelation function

Show that for arbitrary times t1, . . . , tN and complex numbers a1, . . . aN the following relation

for the autocorrelation function of an arbitrary stochastic process x̂(t) holds true:

N∑
i,j=1

a∗i S(ti, tj) aj ≥ 0 . (4)

Here, z∗ denotes the complex conjugate of the complex number z.

Hint: Consider the expectation value
〈∣∣ N∑

i=1

a∗i δx̂(ti)
∣∣2〉, where δx̂(t) = x̂(t) − 〈x̂(t)〉 are the

fluctuations of the process x̂(t).

3.2. Cauchy-Schwarz inequality

Write the identity (4) for the special case N = 2 in the form

a†M(t1, t2) a ≥ 0 for a =

(
a1

a2

)
and a 2× 2 hermitian matrix M(t1, t2). (5)

In this form, the identity means that the matrix M(t1, t2) is positive semi-definite.

Deduce from the fact that the determinant of this matrix has to be non-negative (why?) the

Cauchy-Schwarz inequality〈∣∣δx̂(t1)
∣∣2〉〈∣∣δx̂(t2)

∣∣2〉 ≥ ∣∣〈δx̂(t1) δx̂(t2)
∗〉∣∣2 (6)
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